Skip to main content

Advertisement

Log in

Thermodynamic evaluation of Coshine Yukawa potential (CYP) for some diatomic molecule systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Within the framework of non-relativistic quantum mechanics, the bound state approximate solution of the SE is solved for the Coshine Yukawa potential (CYP) using the Nikiforov–Uvarov (NU) method. By employing the Greene-Aldrich-type approximation scheme, we have obtained the explicit energy-eigenvalues and corresponding normalized eigen-functions in closed form for the newly proposed CYP for hydrogen-related diatomic molecules such as hydrogen dimer (H2), lithium hydride (LiH), scandium hydride (ScH) and hydrogen chloride (HCl). Our results show that the bound state energy is highly sensitive to the spectroscopic parameters of the diatomic molecules considered. The thermodynamic properties are also evaluated including the vibrational partition function, vibrational mean energy, vibrational mean free energy, vibrational entropy and vibrational specific heat capacity. Presented also are some numerical results which show an indication of similar correlation of energies, owing to their ion-ion coupling with regards to similar atomic radii existing among the diatomic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. W. Greiner, Relativistic Quantum Mechanics. Wave Equations II, 3rd edn. (Springer, Berlin, 2000)

    Book  MATH  Google Scholar 

  2. S. Flügge, Practicle Quantum Mechanics (Springer, Berlin, 1994)

    Google Scholar 

  3. A.N. Ikot, U.S. Okorie, G. Osobonye, P.O. Amadi, C.O. Edet, M.J. Sithole, G.J. Rampho, R. Sever, Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields. Heliyon. 6, e03738 (2020). https://doi.org/10.1016/j.heliyon.2020.e03738

    Article  Google Scholar 

  4. S. Dong, G.H. Sun, B.J. Falaye, S.H. Dong, Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V0tanh(ax). Phys. J. Plus Eur (2016). https://doi.org/10.1140/epjp/i2016-16176-5

    Article  Google Scholar 

  5. C.O. Edet, P.O. Amadi, U.S. Okorie, A. Taş, A.N. Ikot, G. Rampho, Solutions of Schrödinger equation and thermal properties of generalized trigonometric Pöschl-Teller potential. Rev. Mex. Fis. 66, 824–839 (2020)

    Article  Google Scholar 

  6. R. Horchani, H. Al-Aamri, N. Al-Kindi, A.N. Ikot, U.S. Okorie, G.J. Rampho, H. Jelassi, Energy spectra and magnetic properties of diatomic molecules in the presence of magnetic and AB fields with the inversely quadratic Yukawa potential. Eur. Phys. J. D. (2021). https://doi.org/10.1140/epjd/s10053-021-00038-2

    Article  Google Scholar 

  7. E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, S.A. Ekong, Mass spectrum of heavy quarkonium for screened Kratzer potential (SKP) using series expansion method. Phys. J. Plus Eur (2021). https://doi.org/10.1140/epjp/s13360-021-01090-y

    Article  Google Scholar 

  8. U.S. Okorie, A.N. Ikot, C.O. Edet, I.O. Akpan, R. Sever, G.J. Rampho, Solutions of the klein gordon equation with generalized hyperbolic potential in d-dimensions. J. Phys. Commun. (2019). https://doi.org/10.1088/2399-6528/ab42c6

    Article  Google Scholar 

  9. E.E. Ibekwe, A.T. Ngiangia, U.S. Okorie, A.N. Ikot, H.Y. Abdullah, Bound state solution of radial schrodinger equation for the quark-antiquark interaction potential. Iran. J. Sci. Technol. Trans. A Sci. 44, 1191–1204 (2020). https://doi.org/10.1007/s40995-020-00913-4

    Article  MathSciNet  Google Scholar 

  10. M.R. Hadizadeh, A. Khaledi-nasab, Heavy tetraquarks in the diquark – antidiquark picture. Phys. Lett. B. 753, 8–12 (2016). https://doi.org/10.1016/j.physletb.2015.11.072

    Article  ADS  Google Scholar 

  11. M.A. Shalchi, M.R. Hadizadeh, R-matrix calculations for few-quark bound states. Eur. Phys. J. C. (2016). https://doi.org/10.1140/epjc/s10052-016-4369-1

    Article  Google Scholar 

  12. U.S. Okorie, E.E. Ibekwe, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, Thermodynamic properties of the modified yukawa potential. J. Korean Phys. Soc. 73, 1211–1218 (2018). https://doi.org/10.3938/jkps.73.1211

    Article  ADS  Google Scholar 

  13. A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential. Phys. J. Plus Eur (2019). https://doi.org/10.1140/epjp/i2019-12783-x

    Article  Google Scholar 

  14. O. Ebomwonyi, C.A. Onate, S.A. Ekong, M.C. Onyeaju, Thermodynamic Properties for the Carbon Monoxide Molecule under the Influence of the Coulomb-Hulthen-Pöschl-Teller Potential. J. Sci. Technol. Res. 1, 122–136 (2019)

    Google Scholar 

  15. T. Sahraeian, M.R. Hadizadeh, Momentum space calculations of the binding energies of argon dimer. Int. J. Quantum Chem. (2019). https://doi.org/10.1002/qua.25807

    Article  Google Scholar 

  16. C.O. Edet, P.O. Okoi, Any l -state solutions of the Schr odinger equation for q -deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions. Revista mexicana de física 65, 333–344 (2019)

    Article  MathSciNet  Google Scholar 

  17. P.O. Okoi, C.O. Edet, T.O. Magu, Relativistic treatment of the hellmann-generalized morse potential. Rev. Mex. Fis. 66, 1–13 (2020)

    MathSciNet  Google Scholar 

  18. C.O. Edet, P.O. Okoi, S.O. Chima, Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential. Bras. Ensino Fis Rev (2020). https://doi.org/10.1590/1806-9126-RBEF-2019-0083

    Article  Google Scholar 

  19. C.O. Edet, U.S. Okorie, A.T. Ngiangia, A.N. Ikot, Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian J. Phys. 94, 425–433 (2020). https://doi.org/10.1007/s12648-019-01477-9

    Article  ADS  Google Scholar 

  20. A.N. Ikot, S. Zarrinkamar, B.H. Yazarloo, H. Hassanabadi, Relativistic symmetries of Deng - Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions. Chinese Phys. B. (2014). https://doi.org/10.1088/1674-1056/23/10/100306

    Article  Google Scholar 

  21. D. Nath, A.K. Roy, dinger equation for Eckart Analytical solution of D dimensional Schr o potential with a new improved approximation in centrifugal term. Chem. Phys. Lett. 780, 138909 (2021). https://doi.org/10.1016/j.cplett.2021.138909

    Article  Google Scholar 

  22. A.N. Ikot, B.H. Yazarloo, E. Maghsoodi, S. Zarrinkamar, H. Hassanabadi, Effects of tensors coupling to Dirac equation with shifted Hulthen potential via SUSYQM. J. Assoc. Arab Univ. Basic Appl. Sci. 18, 46–59 (2015). https://doi.org/10.1016/j.jaubas.2014.03.005

    Article  Google Scholar 

  23. A. Arai, Exactly solvable supersymmetric quantum mechanics. J. Math. Anal. Appl. 158, 63–79 (1991). https://doi.org/10.1016/0022-247X(91)90267-4

    Article  MathSciNet  MATH  Google Scholar 

  24. C.N. Isonguyo, I.B. Okon, A.N. Ikot, H. Hassanabadi, Solution of klein gordon equation for some diatomic molecules with new generalized morse-like potential using SUSYQM. Bull. Korean Chem. Soc. 35, 3443–3446 (2014). https://doi.org/10.5012/bkcs.2014.35.12.3443

    Article  Google Scholar 

  25. B.J. Falaye, Any ℓ-state solutions of the Eckart potential via asymptotic iteration method. Cent. Eur. J. Phys. 10, 960–965 (2012). https://doi.org/10.2478/s11534-012-0047-6

    Article  Google Scholar 

  26. H. Ciftci, R.L. Hall, N. Saad, Perturbation theory in a framework of iteration methods. Phys. Lett. Sect A Gen. At. Solid State Phys. 340, 388–396 (2005). https://doi.org/10.1016/j.physleta.2005.04.030

    Article  MATH  Google Scholar 

  27. K.J. Oyewumi, B.J. Falaye, C.A. Onate, O.J. Oluwadare, W.A. Yahya, Molecular physics : an international journal at the interface between chemistry and physics thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng – Fan potential model. Molecular Physics (2013). https://doi.org/10.1080/00268976.2013.804960

    Article  Google Scholar 

  28. M. Hamzavi, A.A. Rajabi, Solution of Dirac equation with Killingbeck potential by using wave function ansatz method under spin symmetry limit. Commun. Theor. Phys. 55, 35–37 (2011). https://doi.org/10.1088/0253-6102/55/1/07

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Formula method for bound state problems. Few-Body Syst. 56, 63–78 (2015). https://doi.org/10.1007/s00601-014-0937-9

    Article  ADS  Google Scholar 

  30. Q. Wang, X. Xie, S. Li, Z. Zhang, X. Li, H. Yao, C. Chen, F. Cao, J. Sui, X. Liu, Q. Zhang, Enhanced thermoelectric performance in Ti(Fe Co, Ni)Sb pseudo-ternary Half-Heusler alloys. J. Mater. 7, 756–765 (2021). https://doi.org/10.1016/J.JMAT.2020.12.015

    Article  Google Scholar 

  31. J.Y. Liu, G.D. Zhang, C.S. Jia, Calculation of the interaction potential energy curve and vibrational levels for the a3 Σu + state of Li 2 7 molecule. Phys. Lett. Sect A Gen. At. Solid State Phys. 377, 1444–1447 (2013). https://doi.org/10.1016/j.physleta.2013.04.019

    Article  MATH  Google Scholar 

  32. M.C. Onyeaju, J.O.A. Idiodi, A.N. Ikot, M. Solaimani, H. Hassanabadi, Linear and nonlinear optical properties in spherical quantum dots: Manning-Rosen potential. J. Opt. 46, 254–264 (2017). https://doi.org/10.1007/s12596-016-0359-9

    Article  Google Scholar 

  33. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Armsterdam, 2007)

    Book  MATH  Google Scholar 

  34. C.S. Jia, Y. Jia, Relativistic rotation-vibrational energies for the Cs2 molecule. Eur. Phys. J. D. (2017). https://doi.org/10.1140/epjd/e2016-70415-y

    Article  Google Scholar 

  35. C.S. Jia, X.L. Peng, S. He, Molecular spinless energies of the modified Rosen-Morse potential energy model. Bull. Korean Chem. Soc. 35, 2699–2703 (2014). https://doi.org/10.5012/bkcs.2014.35.9.2699

    Article  Google Scholar 

  36. G. Chen, The exact solutions of the Schrödinger equation with the Morse potential via Laplace transforms. Phys. Lett. Sect A Gen. At. Solid State Phys. 326, 55–57 (2004). https://doi.org/10.1016/j.physleta.2004.04.029

    Article  MATH  Google Scholar 

  37. S.M. Ikhdair, R. Sever, Exact quantization rule to the Kratzer-type potentials: an application to the diatomic molecules. J. Math. Chem. 45, 1137–1152 (2009). https://doi.org/10.1007/s10910-008-9438-8

    Article  MathSciNet  MATH  Google Scholar 

  38. S.M. Ikhdair, J. Abu-Hasna, Quantization rule solution to the Hulthén potential in arbitrary dimension with a new approximate scheme for the centrifugal term. Phys. Scr. (2011). https://doi.org/10.1088/0031-8949/83/02/025002

    Article  MATH  Google Scholar 

  39. C. Grosche, Conditionally solvable path integral problems. J. Phys. A. Math. Gen. 28, 5889–5902 (1995). https://doi.org/10.1088/0305-4470/28/20/018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. R.L. Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential. Phys. Rev. A. 14, 2363–2366 (1976). https://doi.org/10.1103/PhysRevA.14.2363

    Article  ADS  Google Scholar 

  41. A.N. Ikot, U.S. Okorie, G.J. Rampho, P.O. Amadi, C.O. Edet, I.O. Akpan, H.Y. Abdullah, R. Horchani, Klein–Gordon Equation and Nonrelativistic thermodynamic properties with improved screened Kratzer potential. J. Low Temp. Phys. 202, 269–289 (2021)

    Article  ADS  Google Scholar 

  42. C.L. Pekeris, The rotation-vibration coupling in diatomic molecules. Phys. Rev. 45, 98–103 (1934)

    Article  ADS  MATH  Google Scholar 

  43. B.I. Ita, H. Louis, O.U. Akakuru, T.O. Magu, I. Joseph, P. Tchoua, P.I. Amos, Bound state solutions of the schrödinger equation for the more general exponential screened coulomb potential plus Yukawa ( MGESCY ) potential using nikiforov-uvarov method. J. Quantum Inform. Sci. (2018). https://doi.org/10.4236/jqis.2018.81003

    Article  Google Scholar 

  44. H.I. Ahmadov, E.A. Dadashov, N.S. Huseynova, V.H. Badalov, Generalized tanh-shaped hyperbolic potential: bound state solution of Schrödinger equation. Phys. J. Plus Eur. (2021). https://doi.org/10.1140/epjp/s13360-021-01202-8

    Article  Google Scholar 

  45. P.M. Morse, Phys. Rev. Phys. Rev. 34, 57–64 (1929)

    ADS  Google Scholar 

  46. C. Berkdemir, J. Han, Any l-state solutions of the Morse potential through the Pekeris approximation and Nikiforov-Uvarov method. Chem. Phys. Lett. 409, 203–207 (2005). https://doi.org/10.1016/j.cplett.2005.05.021

    Article  ADS  Google Scholar 

  47. R.F. Garcia Ruiz, R. Berger, J. Billowes, C.L. Binnersley, M.L. Bissell, A.A. Breier, A.J. Brinson, K. Chrysalidis, T.E. Cocolios, B.S. Cooper, K.T. Flanagan, T.F. Giesen, R.P. de Groote, S. Franchoo, F.P. Gustafsson, T.A. Isaev, Koszorús, G. Neyens, H.A.C.M.S.L.A.R.K.D.A.F.S.G.X.F. PerrettRickettsRotheSchweikhardVernonWendtWienholtzWilkinsYang, Spectroscopy of short-lived radioactive molecules. Nature 581, 396–400 (2020)

    Article  ADS  Google Scholar 

  48. C. Eckart, The penetration of a potential barrier by electrons. Phys. Rev. 35, 1303–1309 (1930). https://doi.org/10.1103/PhysRev.35.1303

    Article  ADS  MATH  Google Scholar 

  49. X. Zou, L.Z. Yi, C.S. Jia, Bound states of the Dirac equation with vector and scalar Eckart potentials. Phys. Lett. Sect A Gen. At. Solid State Phys. 346, 54–64 (2005). https://doi.org/10.1016/j.physleta.2005.07.075

    Article  MathSciNet  MATH  Google Scholar 

  50. O. Bayrak, G. Kocak, I. Boztosun, Any l-state solutions of the Hulthén potential by the asymptotic iteration method. J. Phys. A. Math. Gen. 39, 11521–11529 (2006). https://doi.org/10.1088/0305-4470/39/37/012

    Article  ADS  MATH  Google Scholar 

  51. B.C. Lütfüoǧlu, A.N. Ikot, U.S. Okorie, A.T. Ngiangia, A statistical mechanical analysis on the bound state solution of an energy-dependent deformed Hulthén potential energy. Commun. Theor. Phys. 71, 1127–1138 (2019). https://doi.org/10.1088/0253-6102/71/9/1127

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. M.F. Manning, N. Rosen, Proceedings of the southeastern section of the american physical society. Phys. Rev. 44, 951–954 (1933). https://doi.org/10.1103/PhysRev.69.545

    Article  Google Scholar 

  53. W.C. Qiang, S.H. Dong, Analytical approximations to the solutions of the Manning-Rosen potential with centrifugal term. Phys. Lett. Sect. A Gen. At. Solid State Phys. 368, 13–17 (2007). https://doi.org/10.1016/j.physleta.2007.03.057

    Article  MATH  Google Scholar 

  54. W.C. Qiang, S.H. Dong, The Manning-Rosen potential studied by a new approximate scheme to the centrifugal term. Phys. Scr. (2009). https://doi.org/10.1088/0031-8949/79/04/045004

    Article  MATH  Google Scholar 

  55. R.D. Woods, D.S. Saxon, Diffuse surface optical model for nucleon-nuclei scattering [19]. Phys. Rev. 95, 577–578 (1954). https://doi.org/10.1103/PhysRev.95.577

    Article  ADS  Google Scholar 

  56. B.C. Lütfüoğlu, A.N. Ikot, E.O. Chukwocha, F.E. Bazuaye, Analytical solution of the Klein Gordon equation with a multi-parameter q-deformed Woods-Saxon type potential. Phys. J. Plus Eur (2018). https://doi.org/10.1140/epjp/i2018-12299-y

    Article  Google Scholar 

  57. N. Rosen, P.M. Morse, On the vibrations of polyatomic molecules. Phys. Rev. 42, 210–217 (1932). https://doi.org/10.1103/PhysRev.42.210

    Article  ADS  MATH  Google Scholar 

  58. L.Z. Yi, Y.F. Diao, J.Y. Liu, C.S. Jia, Bound states of the Klein-Gordon equation with vector and scalar Rosen-Morse-type potentials. Phys. Lett. Sect A Gen. At. Solid State Phys. 333, 212–217 (2004). https://doi.org/10.1016/j.physleta.2004.10.054

    Article  MathSciNet  MATH  Google Scholar 

  59. C.S. Jia, Y. Li, Y. Sun, J.Y. Liu, L.T. Sun, Bound states of the five-parameter exponential-type potential model. Phys. Lett. Sect A Gen. At. Solid State Phys. 311, 115–125 (2003). https://doi.org/10.1016/S0375-9601(03)00502-4

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Egrifes, D. Demirhan, F. Büyükkilic, Exact solutions of the Schrodinger equation for the deformed hyperbolic potential well and the deformed four-parameter exponential type potential. Phys. Lett. Sect A Gen. At Solid State Phys. 275, 229–237 (2000). https://doi.org/10.1016/S0375-9601(00)00592-2

    Article  MathSciNet  MATH  Google Scholar 

  61. C.S. Jia, Y.F. Diao, M. Li, Q.B. Yang, L.T. Sun, R.Y. Huang, Mapping of the five-parameter exponential-type potential model into trigonometric-type potentials. J. Phys. A. Math. Gen. 37, 11275–11284 (2004). https://doi.org/10.1088/0305-4470/37/46/012

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. C.S. Jia, X.L. Zeng, L.T. Sun, PT symmetry and shape invariance for a potential well with a barrier. Phys. Lett. Sect A Gen. At. Solid State Phys. 294, 185–189 (2002). https://doi.org/10.1016/S0375-9601(01)00840-4

    Article  MathSciNet  MATH  Google Scholar 

  63. S.M. Ikhdair, R. Sever, Bound states of a more general exponential screened Coulomb potential. J. Math. Chem. 41, 343–353 (2007). https://doi.org/10.1007/s10910-007-9226-x

    Article  MathSciNet  MATH  Google Scholar 

  64. B.I. Ita, P. Ekuri, I.O. Isaac, A.O. James, Bound state solutions of schrÖdinger equation for a more general exponential screened coulomb potential via Nikiforovuvarov method. Eclet. Quim. 35, 103–107 (2010)

    Article  Google Scholar 

  65. A.K. Roy, Critical parameters and spherical confinement of H atom in screened Coulomb potential. Int. J. Quantum Chem. 116, 953–960 (2016). https://doi.org/10.1002/qua.25108

    Article  Google Scholar 

  66. U.S. Okorie, A.N. Ikot, E.O. Chukwuocha, G.J. Rampho, Thermodynamic properties of improved deformed exponential-type potential (IDEP) for some diatomic molecules. Results Phys (2020). https://doi.org/10.1016/j.rinp.2020.103078

    Article  Google Scholar 

  67. G.T. Osobonye, M. Adekanmbi, A.N. Ikot, U.S. Okorie, Thermal properties of anharmonic Eckart potential model using Euler – MacLaurin formula. Pramana (2021). https://doi.org/10.1007/s12043-021-02122-z

    Article  Google Scholar 

  68. C.A. Onate, M.C. Onyeaju, U.S. Okorie, A.N. Ikot, Thermodynamic functions for boron nitride with q-deformed exponential- type potential. Results Phys. 16, 102959 (2020). https://doi.org/10.1016/j.rinp.2020.102959

    Article  Google Scholar 

  69. E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, E.S. William, Masses and thermodynamic properties of a quarkonium system. Can J. Phys. (2021). https://doi.org/10.1139/cjp-2020-0578

    Article  Google Scholar 

  70. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics: A Unified Introduction with Applications (Springer Basel AG). (1988)

  71. M. MohammadiSabet, Solution of radial schrödinger equation with yukawa potential using bethe ansatz method. Acta Phys. Pol. A. 140, 97–102 (2021)

    Article  Google Scholar 

  72. M. Hamzavi, M. Movahedi, K.E. Thylwe, A.A. Rajabi, Approximate analytical solution of the yukawa potential with arbitrary angular momenta. Chinese Phys. Lett. 29, 3–6 (2012). https://doi.org/10.1088/0256-307X/29/8/080302

    Article  Google Scholar 

  73. O. Ebomwonyi, C.A. Onate, M.C. Onyeaju, A.N. Ikot, ScienceDirect Any [À states solutions of the Schr € odinger equation interacting with Hellmann-generalized Morse potential model. Karbala Int. J. Mod. Sci. 3, 59–68 (2017). https://doi.org/10.1016/j.kijoms.2017.03.001

    Article  Google Scholar 

  74. S. Dong, W. Qiang, G. Sun, V.B. Bezerra, Analytical approximations to the l -wave solutions of the Schr odinger equation with the Eckart potential. J. Phys. A: Math. Theoretical (2007). https://doi.org/10.1088/1751-8113/40/34/010

    Article  Google Scholar 

  75. U.S. Okorie, A.N. Ikot, P.O. Amadi, A.T. Ngiangia, E.E. Ibekwe, Approximate solutions of the Schrödinger equation with energy-dependent screened Coulomb potential in D - dimensions. Eclet. Quim. 45, 40–56 (2020)

    Article  Google Scholar 

  76. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions_ with formulas. Graphs, and Math. Tables-National Bureau of Standards. (1970). https://doi.org/10.1159/000452153

    Article  ADS  Google Scholar 

  77. I.S. Gradshteyn, I.M.R., Table of integrals, series, and products: Seventh edition. (2007)

  78. C. Berkdemir, Application of the Nikiforov-Uvarov Method in Quantum Mechanics. (2012)

  79. D. Schiöberg, The energy eigenvalues of hyperbolical potential functions. Mol. Phys. An Int J. Interface Between Chem. Phys. 59, 1123–1137 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. S. Okorie.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekong, S.A., Okorie, U.S., Ikot, A.N. et al. Thermodynamic evaluation of Coshine Yukawa potential (CYP) for some diatomic molecule systems. Eur. Phys. J. Plus 138, 364 (2023). https://doi.org/10.1140/epjp/s13360-023-03982-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03982-7

Navigation