Skip to main content

Advertisement

Log in

Coexisting attractors in memristive load buck converter

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Due to advantages of high efficiency simple topology and easy implementation the DC/DC converter has been widely used in a variety of electrical fields. The stability of power electronic systems and the reliability power electronic systems are the fundamental requirements for electrical system operation. However, there may exist complex nonlinear phenomena in the DC/DC converter systems, which will induce the instability or failure of the electrical systems. Therefore, the research topic of nonlinear dynamics in DC/DC converters has attracted much attention. Memristor, as the fourth generation electrical device, has been applied in multiple electrical circuits. Researching on the nonlinear phenomena of DC/DC converter with memristor load has becoming a hot topic in recent years. Although many nonlinear phenomena in different DC/DC converter structures with memristor load has studied in previously works, the phenomenon of coexisting attractor, which reflects the influence of initial states on memristive electrical system has not been reported. In this work, we studied the nonlinear dynamics of a voltage controlled buck converter with memristor load. The bi-stable coexisting attractor phenomenon is found in the memristive buck converter for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. H. Zhang, D. Dong, M. Jing, W. Liu, F. Zheng, Topology derivation of multiple-port dc–dc converters based on voltage-type ports. IEEE Trans. Ind. Electron. 69(5), 4742–4753 (2021)

    Article  Google Scholar 

  2. J. Ahmad, M.D. Siddique, A. Sarwar, C.H. Lin, A. Iqbal, A high gain noninverting dc–dc converter with low voltage stress for industrial applications. Int. J. Circuit Theory Appl. 49(12), 4212–4230 (2021)

    Article  Google Scholar 

  3. S. Khan, M. Zaid, A. Mahmood, A.S. Nooruddin, J. Ahmad, M.L. Alghaythi, B. Alamri, M. Tariq, A. Sarwar, C.-H. Lin, A new transformerless ultra high gain dc–dc converter for dc microgrid application. IEEE Access 9, 124560–124582 (2021)

    Article  Google Scholar 

  4. S. Qureshi, A. Atangana, A.A. Shaikh, Strange chaotic attractors under fractal-fractional operators using newly proposed numerical methods. Eur. Phys. J. Plus 134(10), 523 (2019)

    Article  Google Scholar 

  5. J. Gómez-Aguilar, K. Ali Abro, O. Kolebaje, A. Yildirim, Chaos in a calcium oscillation model via Atangana–Baleanu operator with strong memory. Eur. Phys. J. Plus 134, 1–9 (2019)

    Article  Google Scholar 

  6. Z. Liang, S. He, H. Wang, K. Sun, A novel discrete memristive chaotic map. Eur. Phys. J. Plus 137(3), 1–11 (2022)

    Article  ADS  Google Scholar 

  7. B. Bao, X. Zhang, H. Bao, P. Wu, Z. Wu, M. Chen, Dynamical effects of memristive load on peak current mode buck–boost switching converter. Chaos Solitons Fractals 122, 69–79 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  8. K. Chakrabarty, G. Poddar, S. Banerjee, Bifurcation behavior of the buck converter. IEEE Trans. Power Electron. 11(3), 439–447 (1996). https://doi.org/10.1109/63.491637

    Article  ADS  Google Scholar 

  9. A. El Aroudi, L. Benadero, E. Toribio, S. Machiche, Quasiperiodicity and chaos in the dc–dc buck–boost converter. Int. J. Bifurc. Chaos 10(02), 359–371 (2000)

    Article  Google Scholar 

  10. Y. Wang, R. Yang, B. Zhang, W. Hu, Smale horseshoes and symbolic dynamics in the buck–boost dc–dc converter. IEEE Trans. Ind. Electron. 65(1), 800–809 (2017)

    Article  Google Scholar 

  11. M.M. Al-Hindawi, A. Abusorrah, Y. Al-Turki, D. Giaouris, K. Mandal, S. Banerjee, Nonlinear dynamics and bifurcation analysis of a boost converter for battery charging in photovoltaic applications. Int. J. Bifurc. Chaos 24(11), 1450142 (2014)

    Article  MATH  Google Scholar 

  12. Ş Demirbaş, H. Fidanboy, E. Kurt, Exploration of the chaotic behaviour in a buck–boost converter depending on the converter and load elements. J. Electron. Mater. 45, 3889–3899 (2016)

    Article  ADS  Google Scholar 

  13. M. Zhioua, A. El Aroudi, S. Belghith, J.M. Bosque-Moncusí, R. Giral, K. Al Hosani, M. Al-Numay, Modeling, dynamics, bifurcation behavior and stability analysis of a dc–dc boost converter in photovoltaic systems. Int. J. Bifurc. Chaos 26(10), 1650166 (2016)

    Article  MathSciNet  Google Scholar 

  14. B. Zhu, Q. Fan, G. Li, D. Wang, Chaos suppression for a buck converter with the memristive load. Analog Integr. Circ. Sig. Process 107, 309–318 (2021)

    Article  Google Scholar 

  15. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

    Article  ADS  Google Scholar 

  16. V.T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, X. Wang, A novel memristive neural network with hidden attractors and its circuitry implementation. Sci. China Technol. Sci. 59, 358–363 (2016)

    Article  ADS  Google Scholar 

  17. Q. Wan, F. Li, S. Chen, Q. Yang, Symmetric multi-scroll attractors in magnetized hopfield neural network under pulse controlled memristor and pulse current stimulation. Chaos Solitons Fractals 169, 113259 (2023)

    Article  Google Scholar 

  18. S. Ding, N. Wang, H. Bao, B. Chen, H. Wu, Q. Xu, Memristor synapse-coupled piecewise-linear simplified hopfield neural network: Dynamics analysis and circuit implementation. Chaos Solitons Fractals 166, 112899 (2023)

    Article  MathSciNet  Google Scholar 

  19. H. Lin, C. Wang, J. Sun, X. Zhang, Y. Sun, H.H. Iu, Memristor-coupled asymmetric neural networks: bionic modeling, chaotic dynamics analysis and encryption application. v 166, 112905 (2023)

    MathSciNet  Google Scholar 

  20. M. Lv, C. Wang, G. Ren, J. Ma, X. Song, Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  21. M. Lv, J. Ma, Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing 205, 375–381 (2016)

    Article  Google Scholar 

  22. S.D. Vijay, K. Thamilmaran, A.I. Ahamed, Superextreme spiking oscillations and multistability in a memristor-based Hindmarsh–Rose neuron model. Nonlinear Dyn. 111(1), 789–799 (2023)

    Article  Google Scholar 

  23. W. Fan, X. Chen, H. Wu, Z. Li, Q. Xu, Firing patterns and synchronization of Morris–Lecar neuron model with memristive autapse. AEU Int. J. Electron. Commun. 158, 154454 (2023)

    Article  Google Scholar 

  24. M. Ma, Y. Lu, Z. Li, Y. Sun, C. Wang, Multistability and phase synchronization of Rulkov neurons coupled with a locally active discrete memristor. Fractal Fract. 7(1), 82 (2023)

    Article  Google Scholar 

  25. R. Zhang, A. Wu, S. Zhang, Z. Wang, S. Cang, Dynamical analysis and circuit implementation of a dc/dc single-stage boost converter with memristance load. Nonlinear Dyn. 93, 1741–1755 (2018)

    Article  Google Scholar 

  26. W. Liu, F. Wang, X. Ma, Slow-scale instability in voltage-mode controlled h-bridge inverter with memristive load. Int. J. Bifurc. Chaos 26(12), 1650200 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Wu, Q. Zhang, N. Yang, R. Jia, C. Liu, Dynamical analysis of a fractional-order boost converter with fractional-order memristive load. Int. J. Bifurc. Chaos 32(03), 2250032 (2022)

    Article  MATH  Google Scholar 

  28. H. Bao, A. Hu, W. Liu, B. Bao, Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2019)

    Article  Google Scholar 

  29. W.-X. Lin, D. Jovcic, High-power high-frequency converter modelling using Dommel’s and Runge–Kutta methods in ABC and DQ frame, in 2014 IEEE PES General Meeting Conference and Exposition, pp. 1–5. IEEE (2014)

  30. W. Lin, D. Jovcic, Average modelling of medium frequency dc–dc converters in dynamic studies. IEEE Trans. Power Deliv. 30(1), 281–289 (2014)

    Article  Google Scholar 

  31. P. Maffezzoni, L. Codecasa, D. D’Amore, Time-domain simulation of nonlinear circuits through implicit Runge–Kutta methods. IEEE Trans. Circuits Syst. I Regul. Pap. 54(2), 391–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Huang, Y. Lu, A method for calculating the Lyapunov exponent spectrum of dc–dc converter feeding with a switching constant power load. IEEJ Trans. Electr. Electron. Eng. 15(7), 1040–1047 (2020)

    Article  Google Scholar 

  33. X. Zhang, B. Bao, H. Bao, Z. Wu, Y. Hu, Bi-stability phenomenon in constant on-time controlled buck converter with small output capacitor ESR. IEEE Access 6, 46227–46232 (2018)

    Article  Google Scholar 

  34. A. Saha, S. Sarkar, S. Banerjee, K.K. Mondal, Signature of chaos and multistability in a Thomas–Fermi plasma. Eur. Phys. J. Spec. Top. 229, 979–988 (2020)

    Article  Google Scholar 

  35. B. Chen, K. Rajagopal, I.I. Hamarash, A. Karthikeyan, I. Hussain, Simple megastable oscillators with different types of attractors; tori, chaotic and hyperchaotic ones. Eur. Phys. J. Spec. Top. 229(6–7), 1155–1161 (2020)

    Article  Google Scholar 

  36. Q. Xu, S. Cheng, S. Ding, et al. Multistability and coexisting attractors in a non-autonomous memristive Jerk circuit: numerical simulations and hardware measurements. Eur. Phys. J. Spec. Top. 231, 3079–3086 (2022). https://doi.org/10.1140/epjs/s11734-022-00557-y

    Article  Google Scholar 

  37. Y. Chen, J. Mou, H. Jahanshahi, Z. Wang, Y. Cao, A new mix chaotic circuit based on memristor-memcapacitor. Eur. Phys. J. Plus 138(1), 78 (2023)

    Article  Google Scholar 

  38. W. Xie, C. Wang, H. Lin, A fractional-order multistable locally active memristor and its chaotic system with transient transition, state jump. Nonlinear Dyn. 104(4), 4523–4541 (2021)

    Article  Google Scholar 

  39. H. Lin, C. Wang, Y. Sun, W. Yao, Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020)

    Article  Google Scholar 

  40. X. Ma, C. Li, Y. Li, L. Bi, Z. Qi, Rotation control of an HR neuron with a locally active memristor. Eur. Phys. J. Plus 137(5), 542 (2022)

    Article  Google Scholar 

  41. H. Lin, C. Wang, Q. Hong, Y. Sun, A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3472–3476 (2020)

    Google Scholar 

  42. M. Liao, C. Wang, Y. Sun, H. Lin, C. Xu, Memristor-based affective associative memory neural network circuit with emotional gradual processes. Neural Comput. Appl. 34(16), 13667–13682 (2022)

    Article  Google Scholar 

  43. K. Deng, S. Zhu, G. Bao, J. Fu, Z. Zeng, Multistability of dynamic memristor delayed cellular neural networks with application to associative memories. IEEE Trans. Neural Netw. Learn Syst. 34(2), 690–702 (2023). https://doi.org/10.1109/TNNLS.2021.3099814

    Article  MathSciNet  Google Scholar 

  44. F. Yu, H. Chen, X. Kong, Q. Yu, S. Cai, Y. Huang, S. Du, Dynamic analysis and application in medical digital image watermarking of a new multi-scroll neural network with quartic nonlinear memristor. Eur. Phys. J. Plus 137(4), 434 (2022)

    Article  Google Scholar 

  45. C. Chen, J. Chen, H. Bao, M. Chen, B. Bao, Coexisting multi-stable patterns in memristor synapse-coupled hopfield neural network with two neurons. Nonlinear Dyn. 95, 3385–3399 (2019)

    Article  MATH  Google Scholar 

  46. E. Ott, J.C. Sommerer, J.C. Alexander, I. Kan, J.A. Yorke, Scaling behavior of chaotic systems with riddled basins. Phys. Rev. Lett. 71(25), 4134 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. L. Cui, W. Luo, Q. Ou, Analysis of basins of attraction of new coupled hidden attractor system. Chaos Solitons Fractals 146, 110913 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. K. Sathiyadevi, S. Karthiga, V. Chandrasekar, D. Senthilkumar, M. Lakshmanan, Frustration induced transient chaos, fractal and riddled basins in coupled limit cycle oscillators. Commun. Nonlinear Sci. Numer. Simul. 72, 586–599 (2019)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Henan Province Science and Technology Development Plan Project (142102210550).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiao Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ji, X. Coexisting attractors in memristive load buck converter. Eur. Phys. J. Plus 138, 347 (2023). https://doi.org/10.1140/epjp/s13360-023-03968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03968-5

Navigation