Skip to main content
Log in

Enhancing motility of micro-swimmers via electric and dynamical interaction effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The purpose of this article is to discuss the motion of five different undulating swimming sheets assisted by an electric field and dynamical interactions. The sine or cosine wavy sheet can be a verge on the spermatozoa's surface. The human cervix is approximated as a rigid two-dimensional channel (with anti-slip effects) under the action of an external electric field. The flow equations of viscus mucus are modeled by using Navier–Stokes equations. The Poisson-Boltzmann equation is employed to simulate the electroosmotic term. Utilizing lubrication and Debye–Huckel approximation, we finally obtained a fourth-order ordinary differential equation with an axial component of velocity as a dependent variable. The closed-form expressions of upper and lower mucus velocity, pressure gradient, and stress components are obtained by utilizing Wolfram Mathematica 13.1. This solution is further used in equilibrium conditions to check whether they are satisfied or not. Off course, conditions will not be satisfied since the guesses are crude. The numerical values of cell speed and flow rate are refined via a root-finding algorithm. These unknowns are further utilized in the formula of work done by the swimmer. The numerical results of cell speed, flow rate, and power delivered are plotted in MATLAB R2022b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statements

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. D.O. Pushkin, H. Shum, J.M. Yeomans, Fluid transport by individual microswimmers. J. Fluid Mech. 726, 5–25 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Z. Shen, A. Würger, J.S. Lintuvuori, Hydrodynamic interaction of a self-propelling particle with a wall: comparison between an active Janus particle and a squirmer model. Eur. Phys. J. E 41, 1–9 (2018)

    Article  Google Scholar 

  3. G.I. Taylor, Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 209(1099), 447–461 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  4. G.I. Taylor, The action of waving cylindrical tails in propelling microscopic organisms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 211(1105), 225–239 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  5. B. Chen, Y.D. Liu, S. Chen, S.R. Jiang, H.T. Wu, A biomimetic spermatozoa propulsion method for interventional micro robot. J. Bionic Eng. 5, 106–112 (2008)

    Article  Google Scholar 

  6. A.T. Chwang, T.Y. Wu, A note on the helical movement of micro-organisms. Proc. R. Soc. Lond. Ser. B Biol. Sci. 178(1052), 327–346 (1971)

    ADS  Google Scholar 

  7. G.J. Hancock, The self-propulsion of microscopic organisms through liquids. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 217(1128), 96–121 (1953)

    ADS  MathSciNet  MATH  Google Scholar 

  8. J. Gray, G.J. Hancock, The propulsion of sea-urchin spermatozoa. J. Exp. Biol. 32(4), 802–814 (1955)

    Article  Google Scholar 

  9. J.E. Drummond, Propulsion by oscillating sheets and tubes in a viscous fluid. J. Fluid Mech. 25(4), 787–793 (1966)

    Article  ADS  Google Scholar 

  10. A.J. Reynolds, The swimming of minute organisms. J. Fluid Mech. 23(2), 241–260 (1965)

    Article  ADS  Google Scholar 

  11. E.O. Tuck, A note on a swimming problem. J. Fluid Mech. 31(2), 305–308 (1968)

    Article  ADS  Google Scholar 

  12. W.J. Shack, T.J. Lardner, A long wavelength solution for a microorganism swimming in a channel. Bull. Math. Biol. 36, 435–444 (1974)

    Article  MATH  Google Scholar 

  13. R.E. Smelser, W.J. Shack, T.J. Lardner, The swimming of spermatozoa in an active channel. J. Biomech. 7(4), 349–355 (1974)

    Article  Google Scholar 

  14. D.F. Katz, On the propulsion of micro-organisms near solid boundaries. J. Fluid Mech. 64(1), 33–49 (1974)

    Article  ADS  MATH  Google Scholar 

  15. J.B. Shukla, B.R.P. Rao, R.S. Parihar, Swimming of spermatozoa in cervix: effects of dynamical interaction and peripheral layer viscosity. J. Biomech. 11(1–2), 15–19 (1978)

    Article  Google Scholar 

  16. J.B. Shukla, P. Chandra, R. Sharma, G. Radhakrishnamacharya, Effects of peristaltic and longitudinal wave motion of the channel wall on movement of micro-organisms: application to spermatozoa transport. J. Biomech. 21(11), 947–954 (1988)

    Article  Google Scholar 

  17. G. Radhakrishnamacharya, R. Sharma, Motion of a self-propelling micro-organism in a channel under peristalsis: effects of viscosity variation. Nonlinear Anal. Modell. Control 12(3), 409–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. T.K. Chaudhury, On swimming in a visco-elastic liquid. J. Fluid Mech. 95(1), 189–197 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. L.D. Sturges, Motion induced by a waving plate. J. Non Newton Fluid Mech. 8, 357–364 (1981)

    Article  MATH  Google Scholar 

  20. E. Lauga, Propulsion in a viscoelastic fluid. Phys. Fluids 19(8), 083104 (2007)

    Article  ADS  MATH  Google Scholar 

  21. M. Sajid, N. Ali, A.M. Siddiqui, Z. Abbas, T. Javed, Effects of permeability on swimming of a micro-organism in an Oldroyd-B Fluid. J. Porous Media 17(1), 59–66 (2014)

    Article  Google Scholar 

  22. N. Ali, M. Sajid, Z. Abbas, O.A. Bég, Swimming dynamics of a micro-organism in a couple stress fluid: a rheological model of embryological hydrodynamic propulsion. J. Mech. Med. Biol. 17(03), 1750054 (2017)

    Article  Google Scholar 

  23. P. Sinha, C. Singh, K.R. Prasad, A microcontinuum analysis of the self propulsion of the spermatozoa in the cervical canal. Int. J. Eng. Sci. 20(9), 1037–1048 (1982)

    Article  MATH  Google Scholar 

  24. D. Philip, P. Chandra, Self-propulsion of spermatozoa in microcontinua: effect of transverse wave motion of channel walls. Arch. Appl. Mech. 66(1), 90–99 (1995)

    Article  ADS  MATH  Google Scholar 

  25. Z. Asghar, N. Ali, M. Sajid, Mechanical effects of complex rheological liquid on a microorganism propelling through a rigid cervical canal: swimming at low Reynolds number. J. Braz. Soc. Mech. Sci. Eng. 40(9), 1–16 (2018)

    Article  Google Scholar 

  26. Z. Asghar, N. Ali, M. Sajid, Analytical and numerical study of creeping flow generated by active spermatozoa bounded within a declined passive tract. Eur. Phys. J. Plus 134(1), 1–15 (2019)

    Article  Google Scholar 

  27. Z. Asghar, N. Ali, M. Sajid, O.A. Bég, Magnetic microswimmers propelling through biorheological liquid bounded within an active channel. J. Magn. Magn. Mater. 486, 165283 (2019)

    Article  Google Scholar 

  28. N. Ali, Z. Asghar, M. Sajid, O. Anwar Bég, Biological interactions between Carreau fluid and microswimmers in a complex wavy canal with MHD effects. J. Braz. Soc. Mech. Sci. Eng. 41(10), 1–13 (2019)

    Article  Google Scholar 

  29. Z. Asghar, N. Ali, M. Waqas, M.A. Javed, An implicit finite difference analysis of magnetic swimmers propelling through non-Newtonian liquid in a complex wavy channel. Comput. Math. Appl. 79(8), 2189–2202 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Z. Asghar, N. Ali, K. Javid, M. Waqas, A.S. Dogonchi, W.A. Khan, Bio-inspired propulsion of micro-swimmers within a passive cervix filled with couple stress mucus. Comput. Methods Programs Biomed. 189, 105313 (2020)

    Article  Google Scholar 

  31. Z. Asghar, N. Ali, M. Waqas, M. Nazeer, W.A. Khan, Locomotion of an efficient biomechanical sperm through viscoelastic medium. Biomech. Model. Mechanobiol. 19, 2271–2284 (2020)

    Article  Google Scholar 

  32. Z. Asghar, N. Ali, K. Javid, M. Waqas, W.A. Khan, Dynamical interaction effects on soft-bodied organisms in a multi-sinusoidal passage. Eur. Phys. J. Plus 136(6), 1–17 (2021)

    Article  Google Scholar 

  33. Z. Asghar, R.A. Shah, W. Shatanawi, N. Ali, A theoretical approach to mathematical modeling of sperm swimming in viscoelastic Ellis fluid in a passive canal. Arch. Appl. Mech. 93(4), 1525–1534 (2022)

    Article  Google Scholar 

  34. Z. Asghar, N. Ali, A mathematical model of the locomotion of bacteria near an inclined solid substrate: effects of different waveforms and rheological properties of couple-stress slime. Can. J. Phys. 97(5), 537–547 (2019)

    Article  ADS  Google Scholar 

  35. D. Tripathi, S. Bhushan, O.A. Bég, Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics. J. Mech. Med. Biol. 17(03), 1750052 (2017)

    Article  Google Scholar 

  36. D. Tripathi, A. Yadav, O.A. Bég, R. Kumar, Study of microvascular non-Newtonian blood flow modulated by electroosmosis. Microvasc. Res. 117, 28–36 (2018)

    Article  Google Scholar 

  37. K. Javid, M. Waqas, Z. Asghar, A. Ghaffari, A theoretical analysis of Biorheological fluid flowing through a complex wavy convergent channel under porosity and electro-magneto-hydrodynamics effects. Comput. Methods Programs Biomed. 191, 105413 (2020)

    Article  Google Scholar 

  38. Z. Asghar, M. Waqas, M.A. Gondal, W.A. Khan, Electro-osmotically driven generalized Newtonian blood flow in a divergent micro-channel. Alex. Eng. J. 61(6), 4519–4528 (2022)

    Article  Google Scholar 

  39. R.A. Shah, Z. Asghar, N. Ali, Mathematical modeling related to bacterial gliding mechanism at low Reynolds number with Ellis Slime. Eur. Phys. J. Plus 137(5), 1–12 (2022)

    Article  Google Scholar 

  40. M. Waqas, Z. Asghar, W.A. Khan, Thermo-solutal Robin conditions significance in thermally radiative nanofluid under stratification and magnetohydrodynamics. Eur. Phys. J. Spec. Top. 230(5), 1307–1316 (2021)

    Article  Google Scholar 

  41. M.S. Arif, K. Abodayeh, Y. Nawaz, The modified finite element method for heat and mass transfer of unsteady reacting flow with mixed convection. Front. Phys. 10, 802 (2022)

    Article  Google Scholar 

  42. H. Khan, J. Alzabut, A. Shah, Z. Y. He, S. Etemad, S. Rezapour, A. Zada, On fractal-fractional waterborne disease model: a study on theoretical and numerical aspects of solutions via simulations. Fractals (2023)

  43. H. Khan, J. Alzabut, D. Baleanu, G. Alobaidi, M.U. Rehman, Existence of solutions and a numerical scheme for a generalized hybrid class of n-coupled modified ABC-fractional differential equations with an application. AIMS Math. 8(3), 6609–6625 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Dr. Zeeshan Asghar would like to thank Prince Sultan University for their support through the TAS research laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeeshan Asghar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical standard

The authors state that this research complies with ethical standards. This research does not involve either human participants or animals.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, Z. Enhancing motility of micro-swimmers via electric and dynamical interaction effects. Eur. Phys. J. Plus 138, 357 (2023). https://doi.org/10.1140/epjp/s13360-023-03963-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03963-w

Navigation