Skip to main content
Log in

How can the networks with various topologies change the occurrence of bifurcation points in a period-doubling route to chaos: a case study of neural networks in the presence and absence of disturbance

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Several mathematical models, such as Hodgkin–Huxley, FitzHugh–Nagumo, Morris–Lecar, Hindmarsh–Rose, and Leech, have been proposed to explain neural behaviors. Changing the parameters of neural models reveals the various neural dynamics. To make these models as realistic as possible, they should be studied in the networks, where there are interactions between the neurons. Hence, investigating neural models in the networks can be helpful. This study examines the attention-deficit disorder model's bifurcation points in both regular and irregular networks. The networks are analyzed in two cases. In the first case, networks are studied where perturbations enter one node. Calculating the recovery time of the disturbed neuron can investigate the bifurcation points. Results show that recovery time reveals the dynamical variation of the disturbed node. The second case examines networks with different coupling strengths and nodes' degrees. Results indicate that as coupling strengths and nodes' degree increase, bifurcations occur in the smaller parameters in the period-doubling route to chaos. A general trend cannot be seen in the inverse route of period doubling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: Data generated during the current study will be made available at reasonable request.]

References

  1. Z. Hou, J. Ma, X. Zhan, L. Yang, Y. Jia, Estimate the electrical activity in a neuron under depolarization field. Chaos Solitons Fractals 142, 110522 (2021)

    Article  MathSciNet  Google Scholar 

  2. A.L. Hodgkin, A.F. Huxley, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116, 497 (1952)

    Article  Google Scholar 

  3. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  ADS  Google Scholar 

  4. I. Hussain, S. Jafari, D. Ghosh, M. Perc, Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons. Nonlinear Dyn. 104, 2711–2721 (2021)

    Article  Google Scholar 

  5. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  ADS  Google Scholar 

  6. J. Hindmarsh, R. Rose, A model of the nerve impulse using two first-order differential equations. Nature 296, 162–164 (1982)

    Article  ADS  Google Scholar 

  7. G. Cymbalyuk, A. Shilnikov, Coexistence of tonic spiking oscillations in a leech neuron model. J. Comput. Neurosci. 18, 255–263 (2005)

    Article  MathSciNet  Google Scholar 

  8. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. Jiang, A. Hastings, Y.-C. Lai, Harnessing tipping points in complex ecological networks. J. R. Soc. Interface 16, 20190345 (2019)

    Article  Google Scholar 

  10. W.-N. Chen, Y.-H. Jia, F. Zhao, X.-N. Luo, X.-D. Jia, J. Zhang, A cooperative co-evolutionary approach to large-scale multisource water distribution network optimization. IEEE Trans. Evol. Comput. 23, 842–857 (2019)

    Article  Google Scholar 

  11. V. Domínguez-García, V. Dakos, S. Kéfi, Unveiling dimensions of stability in complex ecological networks. Proc. Natl. Acad. Sci. 116, 25714–25720 (2019)

    Article  ADS  Google Scholar 

  12. K. Klemm, S. Bornholdt, Topology of biological networks and reliability of information processing. Proc. Natl. Acad. Sci. 102, 18414–18419 (2005)

    Article  ADS  Google Scholar 

  13. S.S. Mohanrasu, K. Udhayakumar, T.M.C. Priyanka, A. Gowrisankar, S. Banerjee, R. Rakkiyappan, Event-triggered impulsive controller design for synchronization of delayed chaotic neural networks and its fractal reconstruction: an application to image encryption. Appl. Math. Model. 115, 490–512 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Udhayakumar, R. Rakkiyappan, F.A. Rihan, S. Banerjee, Projective multi-synchronization of fractional-order complex-valued coupled multi-stable neural networks with impulsive control. Neurocomputing 467, 392–405 (2022)

    Article  Google Scholar 

  15. A. Roy, A.P. Misra, S. Banerjee, Synchronization in networks of coupled hyperchaotic CO2 lasers. Phys. Scr. 95, 045225 (2020)

    Article  ADS  Google Scholar 

  16. S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Article  ADS  Google Scholar 

  17. I. Belykh, M. Hasler, M. Lauret, H. Nijmeijer, Synchronization and graph topology. Int. J. Bifurc. Chaos 15, 3423–3433 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Majhi, M. Perc, D. Ghosh, Dynamics on higher-order networks: a review. J. R. Soc. Interface 19, 20220043 (2022)

    Article  Google Scholar 

  19. S. Kundu, S. Majhi, D. Ghosh, Persistence in multilayer ecological network consisting of harvested patches. Chaos Interdiscip. J. Nonlinear Sci. 31, 033154 (2021)

    Article  MathSciNet  Google Scholar 

  20. M.I. Rabinovich, M.A. Zaks, P. Varona, Sequential dynamics of complex networks in mind: consciousness and creativity. Phys. Rep. 883, 1–32 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat et al., Superfamilies of evolved and designed networks. Science 303, 1538–1542 (2004)

    Article  ADS  Google Scholar 

  22. N.N. Moghadam, R. Ramamoorthy, F. Nazarimehr, K. Rajagopal, S. Jafari, Tipping points of a complex network biomass model: Local and global parameter variations. Physica A 592, 126845 (2022)

    Article  Google Scholar 

  23. B. Arani, S. Carpenter, L. Lahti, E. van Nes, M. Scheffer, Exit time as a measure of ecological resilience. Science 372, eaay4895 (2021)

    Article  Google Scholar 

  24. M. Hirota, M. Holmgren, E.H. Van Nes, M. Scheffer, Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011)

    Article  ADS  Google Scholar 

  25. M. Scheffer, S.R. Carpenter, Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003)

    Article  Google Scholar 

  26. R. Liu, X. Yu, X. Liu, D. Xu, K. Aihara, L. Chen, Identifying critical transitions of complex diseases based on a single sample. Bioinformatics 30, 1579–1586 (2014)

    Article  Google Scholar 

  27. L. Chen, R. Liu, Z.-P. Liu, M. Li, K. Aihara, Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 1–8 (2012)

    Article  Google Scholar 

  28. T.M. Bury, R. Sujith, I. Pavithran, M. Scheffer, T.M. Lenton, M. Anand et al., Deep learning for early warning signals of tipping points. Proc. Natl. Acad. Sci. 118, 39 (2021)

    Article  MathSciNet  Google Scholar 

  29. S.H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering (CRC Press, London, 2018)

    Book  MATH  Google Scholar 

  30. C. Meisel, A. Klaus, C. Kuehn, D. Plenz, Critical slowing down governs the transition to neuron spiking. PLoS Comput. Biol. 11, e1004097 (2015)

    Article  ADS  Google Scholar 

  31. I.A. van de Leemput, M. Wichers, A.O. Cramer, D. Borsboom, F. Tuerlinckx, P. Kuppens et al., Critical slowing down as early warning for the onset and termination of depression. Proc. Natl. Acad. Sci. 111, 87–92 (2014)

    Article  ADS  Google Scholar 

  32. N.N. Moghadam, F. Nazarimehr, S. Jafari, J.C. Sprott, Studying the performance of critical slowing down indicators in a biological system with a period-doubling route to chaos. Physica A 544, 123396 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Mehrabbeik, R. Ramamoorthy, K. Rajagopal, F. Nazarimehr, S. Jafari, I. Hussain, Critical slowing down indicators in synchronous period-doubling for salamander flicker vision. Eur. Phys. J. Spec. Top. 230, 3291–3298 (2021)

    Article  Google Scholar 

  34. I.A. van de Leemput, V. Dakos, M. Scheffer, E.H. van Nes, Slow recovery from local disturbances as an indicator for loss of ecosystem resilience. Ecosystems 21, 141–152 (2018)

    Article  Google Scholar 

  35. Z. Faghani, S. Jafari, C.-Y. Chen, F. Nazarimehr, Investigating bifurcation points of neural networks: application to the epileptic seizure. Eur. Phys. J. B 93, 1–18 (2020)

    Article  Google Scholar 

  36. G. Baghdadi, S. Jafari, J. Sprott, F. Towhidkhah, M.H. Golpayegani, A chaotic model of sustaining attention problem in attention deficit disorder. Commun. Nonlinear Sci. Numer. Simul. 20, 174–185 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. M. Frasca, L.V. Gambuzza, A. Buscarino, L. Fortuna, Synchronization in Networks of Nonlinear Circuits: Essential Topics with MATLAB® Code (Springer, 2018).

  38. X.F. Wang, G. Chen, Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3, 6–20 (2003)

    Article  Google Scholar 

  39. A.-L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. E. Mliki, N. Hasanzadeh, F. Nazarimehr, A. Akgul, O. Boubaker, S. Jafari, Some New Chaotic Maps With Application in Stochastic, in Recent Advances in Chaotic Systems and Synchronization (Elsevier, 2019), pp. 165–185

Download references

Funding

This work is partially funded by the Centre for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2022/RD/006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Nazarimehr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navid Moghadam, N., Ramamoorthy, R., Nazarimehr, F. et al. How can the networks with various topologies change the occurrence of bifurcation points in a period-doubling route to chaos: a case study of neural networks in the presence and absence of disturbance. Eur. Phys. J. Plus 138, 362 (2023). https://doi.org/10.1140/epjp/s13360-023-03939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03939-w

Navigation