Skip to main content

Advertisement

Log in

Laser ablation fabrication of Zn1-xNixO/ZnO heterostructure and valence band offset measurements

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

ZnNiO and ZnO hetero-interfaces grown by pulsed laser deposition technique have been studied by grazing angle XRD (Gi-XRD), UV–visible spectroscopy, X-ray photoelectron spectroscopy, and valence band spectroscopy. Type-II band alignment (staggered gap) has been observed at ZnNiO and ZnO hetero-interface with conduction band and valence band offset values of − 0.06 eV and 0.15 eV, respectively, for Ni-2p state − 0.22 eV and 0.31 eV, respectively, for Zn-2p state for 3% of Ni doping. For 7% of Ni doping, conduction and valence band offsets of − 0.17 eV and 0.31 eV, respectively, have been obtained for Ni-2p state, − 0.29 eV and 0.43 eV, respectively, for Zn-2p state. The precise calculation of band offsets in ZnNiO and ZnO interface for both Ni-2p and Zn-2p core energy levels will be very helpful in designing and fabricating optoelectronic devices like LEDs, photodetectors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are not openly available but will be made available from the corresponding author on a reasonable request.]

References

  1. C. Klingshirn, ZnO: from basics towards applications. Phys. Status Solidi (b) 244(9), 3027–3073 (2007). https://doi.org/10.1002/pssb.200743072

    Article  ADS  Google Scholar 

  2. A.B. Djurišić, A.M.C. Ng, X.Y. Chen, ZnO nanostructures for optoelectronics: material properties and device applications. Prog. Quantum Electron. 34(4), 191–259 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001

    Article  ADS  Google Scholar 

  3. D.K. Sharma, S. Shukla, K.K. Sharma, V. Kumar, A review on ZnO: fundamental properties and applications. Mater. Today Proc. 49(8), 3028–3035 (2020). https://doi.org/10.1016/j.matpr.2020.10.238

    Article  Google Scholar 

  4. S. Vyas, A short review on properties and applications of zinc oxide based thin films and devices: ZnO as a promising material for applications in electronics, optoelectronics, biomedical and sensors. Johns. Matthey Technol. Rev. 64(2), 202–218 (2020). https://doi.org/10.1595/205651320x15694993568524

    Article  Google Scholar 

  5. Y.-S. Choi, J.-W. Kang, D.-K. Hwang, S.-J. Park, Recent advances in ZnO-based light-emitting diodes. IEEE Trans. Electron Devices 57(1), 26–41 (2010). https://doi.org/10.1109/ted.2009.2033769

    Article  ADS  Google Scholar 

  6. F.M. Simanjuntak, D. Panda, K.-H. Wei, T.-Y. Tseng, Status and prospects of ZnO-based resistive switching memory devices. Nanoscale Res. Lett. (2016). https://doi.org/10.1186/s11671-016-1570-y

    Article  Google Scholar 

  7. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ion. 360, 115544 (2021). https://doi.org/10.1016/j.ssi.2020.115544

    Article  Google Scholar 

  8. D.F. Paraguay, L.W. Estrada, N.D.R. Acosta, E. Andrade, M. Miki-Yoshida, Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films 350(1–2), 192–202 (1999). https://doi.org/10.1016/s0040-6090(99)00050-4

    Article  ADS  Google Scholar 

  9. G. Singh, R.C. Singh, Highly sensitive and selective liquefied petroleum gas sensor based on novel ZnO–NiO heterostructures. J. Mater. Sci. Mater. Electron. 30(22), 20010–20018 (2019). https://doi.org/10.1007/s10854-019-02368-9

    Article  Google Scholar 

  10. M. Kim, J.-H. Seo, U. Singisetti, Z. Ma, Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J. Mater. Chem. C 5(33), 8338–8354 (2017). https://doi.org/10.1039/c7tc02221b

    Article  Google Scholar 

  11. A. Franciosi, Heterojunction band offset engineering. Surf. Sci. Rep. 25(1–4), 1–140 (1996). https://doi.org/10.1016/0167-5729(95)00008-9

    Article  ADS  Google Scholar 

  12. A. Shaw, T.J. Whittles, I.Z. Mitrovic, J.D. Jin, J.S. Wrench, D. Hesp, S. Hall, Physical and electrical characterization of Mg-doped ZnO thin-film transistors. in 45th European Solid State Device Research Conference (2015), pp. 28–31. https://doi.org/10.1109/essderc.2015.7324751

  13. U.D. Babar, N.M. Garad, A.A. Mohite, B.M. Babar, H.D. Shelke, P.D. Kamble, U.T. Pawar, Study the photovoltaic performance of pure and Cd-doped ZnO nanoparticles prepared by reflux method. Mater. Today Proc. 43(4), 2780–2785 (2020). https://doi.org/10.1016/j.matpr.2020.08.008

    Article  Google Scholar 

  14. J. Sun, M. Zhao, D. Jiang, Enhanced performance of MgZnO flexible ultraviolet photodetectors. J. Mater. Sci. Mater. Electron. 33, 7244–7255 (2022). https://doi.org/10.1007/s10854-022-07908-4

    Article  Google Scholar 

  15. P. Wang, J. Pan, J. Mei, Q. Yu, P. Wang, Z. Chen, C. Li, Photovoltaic conversion enhancement of a transparent NiO/CdO/ZnO pn junction device with a CdO transition layer. J. Alloy. Compd. 862, 158430 (2021). https://doi.org/10.1016/j.jallcom.2020.158430

    Article  Google Scholar 

  16. H. Zhou, J. Wang, M. Mai, X. Ma, S. Hu, M. Xu, S. Yan, Coupling behaviors of large lattice mismatch interfaces between hexagonal ZnO and cubic (001)MgO. Thin Solid Films 709, 138074 (2020). https://doi.org/10.1016/j.tsf.2020.138074

    Article  ADS  Google Scholar 

  17. M. Ebihara, I. Suemune, H. Kumano, T. Nakashita, H. Machida, Formation of CdO dots on atomically flat ZnO surfaces. Phys. Status Solidi (c) 3(4), 933–937 (2006). https://doi.org/10.1002/pssc.200564746

    Article  ADS  Google Scholar 

  18. A. Moridi, H. Ruan, L.C. Zhang, M. Liu, Residual stresses in thin film systems: effects of lattice mismatch, thermal mismatch and interface dislocations. Int. J. Solids Struct. 50(22–23), 3562–3569 (2013). https://doi.org/10.1016/j.ijsolstr.2013.06.022

    Article  Google Scholar 

  19. Z. Ma, F. Ren, X. Ming, Y. Long, A.A. Volinsky, Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials 12(1), 196 (2019). https://doi.org/10.3390/ma12010196

    Article  ADS  Google Scholar 

  20. M.Y. Ali, M.K.R. Khan, A.M.M.T. Karim, M.M. Rahman, M. Kamruzzaman, Effect of Ni doping on structure, morphology and opto-transport properties of spray pyrolised ZnO nano-fiber. Heliyon 6(3), 03588 (2020). https://doi.org/10.1016/j.heliyon.2020.e03588

    Article  Google Scholar 

  21. B.C. Joshi, A.K. Chaudhri, Sol–gel-derived Cu-doped ZnO thin films for optoelectronic applications. ACS Omega 7(25), 21877–21881 (2022). https://doi.org/10.1021/acsomega.2c02040

    Article  Google Scholar 

  22. M. Suja, S.B. Bashar, M.M. Morshed, J. Liu, Realization of Cu-doped p-type ZnO thin films by molecular beam epitaxy. ACS Appl. Mater. Interfaces 7(16), 8894–8899 (2015). https://doi.org/10.1021/acsami.5b01564

    Article  Google Scholar 

  23. M. Ayachi, F. Ayad, A. Djelloul, L. Benharrat, S. Anas, Synthesis and characterization of Ni-doped ZnO thin films prepared by sol–gel spin-coating method. Semiconductors 55, 482–490 (2021). https://doi.org/10.1134/S1063782621050043

    Article  ADS  Google Scholar 

  24. Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, K. Ibrahim, Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun. 135(7), 430–433 (2005). https://doi.org/10.1016/j.ssc.2005.05.024

    Article  ADS  Google Scholar 

  25. S.C. Das, R.J. Green, J. Podder, T.Z. Regier, G.S. Chang, A. Moewes, Band gap tuning in ZnO through Ni doping via spray pyrolysis. J Phys Chem C 117(24), 12745–12753 (2013). https://doi.org/10.1021/jp3126329

    Article  Google Scholar 

  26. V. Devi, R.J. Manish Kumar, D.M. Choudhary, R.K. Phase, B.C. Joshi, Band offset studies in pulse laser deposited Zn1−xCdxO/ZnO hetero-junctions. J. Appl. Phys. 117, 225305 (2015)

    Article  ADS  Google Scholar 

  27. M. Hussain, Z.H. Ibupoto, M.A. Abbassi, A. Khan, G. Pozina, O. Nur, M. Willander, Synthesis of CuO/ZnO Composite nanostructures, their optical characterization and valence band offset determination by X-ray photoelectron spectroscopy. J Nanoelectron. Optoelectron. 9, 348–356 (2014). https://doi.org/10.1166/jno.2014.1594

    Article  Google Scholar 

  28. S.C. Su, Y.M. Lu, Z.Z. Zhang, C.X. Shan, B.H. Li, D.Z. Shen, X.W. Fan, Valence band offset of ZnO/Zn0.85Mg0.15O heterojunction measured by X-ray photoelectron spectroscopy. Appl. Phys. Lett. 93(8), 082108 (2008). https://doi.org/10.1063/1.2977478

    Article  ADS  Google Scholar 

  29. D. Kawade, S.F. Chichibu, M. Sugiyama, Experimental determination of band offsets of NiO-based thin film heterojunctions. J. Appl. Phys. 116(16), 163108 (2014). https://doi.org/10.1063/1.4900737

    Article  ADS  Google Scholar 

  30. Z.-G. Yang, L.-P. Zhu, Y.-M. Guo, W. Tian, Z.-Z. Ye, B.-H. Zhao, Valence-band offset of p-NiO/n-ZnO heterojunction measured by X-ray photoelectron spectroscopy. Phys. Lett. A 375(16), 1760–1763 (2011). https://doi.org/10.1016/j.physleta.2011.03.021

    Article  ADS  Google Scholar 

  31. R. Deng, B. Yao, Y.F. Li, Y.M. Zhao, B.H. Li, C.X. Shan, X.W. Fan, X-ray photoelectron spectroscopy measurement of n-ZnO/p-NiO heterostructure valence-band offset. Appl. Phys. Lett. 94(2), 022108 (2009). https://doi.org/10.1063/1.3072367

    Article  ADS  Google Scholar 

  32. T.A. Dar, A. Agrawal, P. Misra, L.M. Kukreja, P.K. Sen, P. Sen, Valence and conduction band offset measurements in Ni0.07Zn0.93O/ZnO heterostructure. Curr. Appl. Phys. 14(2), 171–175 (2014). https://doi.org/10.1016/j.cap.2013.10.017

    Article  ADS  Google Scholar 

  33. S. Dewan, M. Tomar, A. Goyal, A.K. Kapoor, R.P. Tandon, V. Gupta, Study of energy band discontinuity in NiZnO/ZnO heterostructure using X-ray photoelectron spectroscopy. Appl. Phys. Lett. 108(21), 211603 (2016). https://doi.org/10.1063/1.4952717

    Article  ADS  Google Scholar 

  34. J. Hao, X. Wang, F. Liu, S. Han, J. Lian, Q. Jiang, Facile synthesis ZnS/ZnO/Ni(OH)2 composites grown on Ni foam: a bifunctional materials for photocatalysts and supercapacitors. Rep. Sci. (2017). https://doi.org/10.1038/s41598-017-03200-2

    Article  Google Scholar 

  35. V. Devi, M. Kumar, D.K. Shukla, R.J. Choudhary, D.M. Phase, R. Kumar, B.C. Joshi, Structural, optical and electronic structure studies of Al doped ZnO thin films. Superlattices Microstruct. 83, 431–438 (2015). https://doi.org/10.1016/j.spmi.2015.03.047

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. V. Raghavendra Reddy (Scientist), Mr. Anil Gome, Dr. Uday Deshpande, (Scientist), and Mr. Sachin Kumar Dabaray (Jr. Engineer) from University Grant Commission-Department of Atomic Energy, Indore Madhya Pradesh India, for providing characterization facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Joshi.

Ethics declarations

Conflict of interest

Regarding the publication of this paper, there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Joshi, B.C. Laser ablation fabrication of Zn1-xNixO/ZnO heterostructure and valence band offset measurements. Eur. Phys. J. Plus 138, 327 (2023). https://doi.org/10.1140/epjp/s13360-023-03932-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03932-3

Navigation