Skip to main content

Advertisement

Log in

Cd-doping-assisted tuning of transparency and conductivity of MnIn2O4 by density functional quantum theoretical approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Spinel oxides have attracted huge attention from researchers owing to their fundamental potential and applied prospects. In particular, it is highly desirable to enhance simultaneously the transparent and conducting nature of spinel oxides for many device applications such as display screens. To achieve the task, we report a comparative analysis on the spin-polarized electronic and optical properties of manganese-indium-dioxide (MnIn2O4) spinel and its Cd-doped counterparts MnIn2−xCdxO4 (x = 0.25, 0.50, 0.75, 1). For the quantum-computation analysis of the required properties, we apply density functional theory within Tran-Blaha Modified Becke–Johnson functional to account for electronic exchange correlation. The calculated energy bandgap of MnIn2O4 is 0.8 eV for majority spin and 1.2 eV for minority spin. We observe a considerable modification in bandgap of MnIn2O4 with Cd-doping concentration along with the enhancement of intensity of DOS (density of states) near \(E_{F}\) level. The maximum bandgap of 1.8 eV and 2.1 eV is predicted for majority and minority spin for the compound MnInCdO4. The Cd doping-assisted enhancement of bandgap and DOS near \(E_{F}\), significantly modified the transparency and conductivity in MnInCdO4 at specific energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data is availbe on reasonable request to the corresponding author].

References

  1. K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)

    Article  Google Scholar 

  2. H. Choi, J. Shim, B. Min, Electronic structures and magnetic properties of spinel Zn Mn2O4 under high pressure. Phys. Rev. B 74(17), 172103 (2006)

    Article  ADS  Google Scholar 

  3. V.G. Harris, Microwave magnetic materials, in Handbook of Magnetic Materials. (Elsevier, 2012), pp.1–63

    Google Scholar 

  4. T. Tatarchuk, B. Al-Najar, M. Bououdina, M.A.A. Ahmed, Catalytic and Photocatalytic Properties of Oxide Spinels, in Handbook of Ecomaterials. ed. by L.M.T. Martínez et al. (Springer International Publishing AG, New York, 2018)

    Google Scholar 

  5. J.A.M. Gamboa et al., A figure of merit to evaluate transparent conductor oxides for solar cells using photonic flux density. Thin Solid Films 599, 14–18 (2016)

    Article  ADS  Google Scholar 

  6. T.M.W.J. Bandara et al., Transparent and conductive F-Doped SnO2 nanostructured thin flms by sequential nebulizer spray pyrolysis. MRS Adv. 6, 417–421 (2021)

    Article  Google Scholar 

  7. G.K. Dalapati et al., Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review. J. Mater. Chem. A 9, 16621–16684 (2021)

    Article  Google Scholar 

  8. A.V. Sanchela et al., Optoelectronic properties of transparent oxide semiconductor ASnO3 (A = Ba, Sr, and Ca) epitaxial films and thin film transistors. J. Vac. Sci. Technol., A 40, 020803 (2022)

    Article  Google Scholar 

  9. Z. Wang et al., Transparent conductive oxides and their applications in near infrared plasmonics. Phys. Status Solidi A 216, 1700794 (2019)

    Article  ADS  Google Scholar 

  10. S.H. Lee et al., Frustrated magnetism and cooperative phase transitions in spinels. J. Phys. Soc. Jpn. 79(1), 011004 (2010)

    Article  ADS  Google Scholar 

  11. Y. He et al., Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 71(12), 125411 (2005)

    Article  ADS  Google Scholar 

  12. C.P. Poole, H.A. Farach, Magnetic phase diagram of spinel spin-glasses. Z. für Phys. B Condens. Matter 47(1), 55–57 (1982)

    Article  ADS  Google Scholar 

  13. M.F. Bekheet, L. Dubrovinsky, A. Gurlo, Compressibility and structural stability of spinel-type MnIn2O4. J. Solid State Chem. 230, 301–308 (2015)

    Article  ADS  Google Scholar 

  14. V. Zhandun, The magnetic, electronic, optical, and structural properties of the AB2O4 (A= Mn, Fe, co; B= Al, Ga, In) spinels: Ab initio study. J. Magn. Magn. Mater. 533, 168015 (2021)

    Article  Google Scholar 

  15. K. Krezhov, Neutron diffraction assisted investigations in condensed matter physics and materials science at inrne–bas. Invited Papers, 2012, p. 31

  16. M.F. Bekheet et al., Low temperature synthesis of nanocrystalline MnIn2O4 spinel. Dalton Trans. 41(12), 3374–3376 (2012)

    Article  Google Scholar 

  17. M.F. Bekheet et al., Ferrimagnetism in manganese-rich gallium and aluminium spinels due to mixed valence Mn2+–Mn3+ states. Dalton Trans. 47(8), 2727–2738 (2018)

    Article  Google Scholar 

  18. M.F. Indates, B.I. Pokrovskii, A.K. Gapeev, K.V. Pokholok, L.N. Komissarova, I.V. Igonina, A.M. Babeshkin, Soviet physics. Crystallography 17(4–6), 696 (1972)

    Google Scholar 

  19. N. Kimizuka, T. Mohri, Structural classification of RAO3 (MO) n compounds (R= Sc, In, Y, or lanthanides; A= Fe (III), Ga, Cr, or Al; M= divalent cation; n= 1–11). J. Solid State Chem. 78(1), 98–107 (1989)

    Article  ADS  Google Scholar 

  20. M.M. Lope et al., Why MnIn2O4 spinel is not a transparent conducting oxide? J. Solid State Chem. 187, 172–176 (2012)

    Article  ADS  Google Scholar 

  21. G.K.P. Palmer, T. Mason, Zn2− xSn1− xIn2xO4− δ: An indium-substituted spinel with transparent conducting properties. J. Solid State Chem. 134(1), 192–197 (1997)

    Article  ADS  Google Scholar 

  22. N. Ueda et al., New oxide phase with wide band gap and high electroconductivity, MgIn2O4. Appl. Phys. Lett. 61(16), 1954–1955 (1992)

    Article  ADS  Google Scholar 

  23. K. Chopra, S. Major, D. Pandya, Transparent conductors—a status review. Thin Solid Films 102(1), 1–46 (1983)

    Article  ADS  Google Scholar 

  24. S. Akbudak et al., Structural, electronic, elastic, optical and vibrational properties of MAl2O4 (M= Co and Mn) aluminate spinels. Ceram. Int. 44(1), 310–316 (2018)

    Article  Google Scholar 

  25. T. Zhang et al., Elastic and electronic properties of MnTi2O4 under pressure: a first-principle study. Comput. Mater. Sci. 84, 156–162 (2014)

    Article  Google Scholar 

  26. Y. Huang, Z. Yang, Y. Zhang, Magnetic, transport, thermal properties and orbital state for spinel MnTi2O4. J. Magn. Magn. Mater. 324(13), 2075–2081 (2012)

    Article  ADS  Google Scholar 

  27. F. Tielens et al., Periodic DFT study of the structural and electronic properties of bulk CoAl2O4 spinel. J. Phys. Chem. B 110(2), 988–995 (2006)

    Article  Google Scholar 

  28. Y. Hou et al., Structural, electronic and magnetic properties of manganese substituted CoFe2O4: a first-principles study. J. Magn. Magn. Mater. 495, 165862 (2020)

    Article  Google Scholar 

  29. A. Nadeem et al., First-principles quantum analysis on the role of V-doping on the tuning of electronic and optical properties of spinel oxides MnTi2O4. Mater. Sci. Eng., B 278, 115643 (2022)

    Article  Google Scholar 

  30. J. Orton, Semiconductors and the Information Revolution (Elsevier, Amsterdam, 2009)

    Google Scholar 

  31. N. Dharmarasu, H. Hillmer, F.T. Mahi, Compound semiconductors in reference module in materials science and materials engineering. Mater. Adv. 24, 1–27 (2017)

    Google Scholar 

  32. N. Dharmarasu, H. Hillmer, Compound semiconductors in comprehensive microsystems, (2008) pp. 25–51

  33. K. Burke, L. Wagner, ABC of ground-state DFT (University Lecture, Edinburgh, 2014)

    Google Scholar 

  34. P. Ziesche, S. Kurth, J.P. Perdew, Density functionals from LDA to GGA. Comput. Mater. Sci. 11(2), 122–127 (1998)

    Article  Google Scholar 

  35. Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73(23), 235116 (2006)

    Article  ADS  Google Scholar 

  36. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  ADS  Google Scholar 

  37. K. Schwarz, P. Blaha, G.K. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147(1–2), 71–76 (2002)

    Article  ADS  MATH  Google Scholar 

  38. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 83(19), 195134 (2011)

    Article  ADS  Google Scholar 

  39. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  40. D.J. Singh, Structure and optical properties of high light output halide scintillators. Phys. Rev. B 82(15), 155145 (2010)

    Article  ADS  Google Scholar 

  41. S.D. Guo, B.G. Liu, Improved half-metallic ferromagnetism of transition-metal pnictides and chalcogenides calculated with a modified Becke–Johnson exchange potential. EPL (Europhys. Lett.) 93(4), 47006 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  42. M.G. Brik, A. Suchocki, A. Kaminska, Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements. Inorg. Chem. 53(10), 5088–5099 (2014)

    Article  Google Scholar 

  43. P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  44. B. Yıldız, A. Erkişi, and G. Sürücü, The mechanical and electronic properties of spinel oxides VX2O4 (X= Mn and Fe) by first principle calculations. in AIP Conference Proceedings. AIP Publishing LLC, 2019

  45. K. Inomata et al., Highly spin-polarized materials and devices for spintronics. Sci. Technol. Adv. Mater. 9(1), 014101 (2008)

    Article  Google Scholar 

  46. A. Wang et al., Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors. PNAS 98(13), 7113 (2001)

    Article  ADS  Google Scholar 

  47. Y. Zhu, P. Lei, J. Zhu, J. Han, Influences of indium doping and annealing on microstructure and optical properties of cadmium oxide thin films. Appl. Phys. A. 122, 410 (2016)

    Article  ADS  Google Scholar 

  48. W. Xie and H. Luo, Structure-property correlations and superconductivity in spinels in magnetic spinels–synthesis, Properties and Applications Editor Mohindar Seehra, (2017)

  49. D. Segev, S.H. Wei, Structure-derived electronic and optical properties of transparent conducting oxides. Phys. Rev. B 71(12), 125129 (2005)

    Article  ADS  Google Scholar 

  50. R. Singh, R.K. Ulrich, High and low dielectric donstant materials. Electrochem. Soc. Interface 8, 26–30 (1999)

    Article  Google Scholar 

  51. R. Kumar et al., Overview on metamaterial: history, types and applications. Materilastoday Proc. 56, 3016–3024 (2022)

    Google Scholar 

  52. D.R. Penn, Wsve-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)

    Article  ADS  MATH  Google Scholar 

  53. B. Hammer, L.B. Hansen, J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59(11), 7413 (1999)

    Article  ADS  Google Scholar 

  54. P. Herve, L. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77(10), 5476–5477 (1995)

    Article  ADS  Google Scholar 

  55. H. Li, W. Chen, Stability of MnCr2O4 spinel and Cr2O3 in high temperature carbonaceous environments with varied oxygen partial pressures. Corros. Sci. 52(7), 2481–2488 (2010)

    Article  Google Scholar 

  56. Y. Li et al., Pressure-tuning the nonlinear-optical properties of AgGaS2 crystal: a first-principle study. Opt. Mater. Exp. 5(8), 1738–1751 (2015)

    Article  ADS  Google Scholar 

  57. T.-H. Ma et al., First-principles calculations of the structural, elastic, electronic and optical properties of orthorhombic LiGaS2 and LiGaSe2. Phys. B 405(1), 363–368 (2010)

    Article  ADS  Google Scholar 

  58. S. Li et al., Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res. Lett. 9(1), 1–8 (2014)

    Article  ADS  Google Scholar 

  59. E. Martínez-Terán et al. Room temperature ferromagnetic MnCr2O4 spinel chromite nanoparticles. in APS March Meeting Abstracts, 2019

  60. G. Sun et al., Performance of the Vienna ab initio simulation package (VASP) in chemical applications. J. Mol. Struct. Theory. Chem. 624(1–3), 37–45 (2003)

    Article  Google Scholar 

  61. G. Haacke, New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976)

    Article  ADS  Google Scholar 

  62. T. Oda et al., Electron-phonon interaction, lattice dynamics and superconductivity of an oxide spinel LiTi2O4. J. Phys. Condens. Matter 6, 6997 (1994)

    Article  ADS  Google Scholar 

  63. R. Padmavathy et al., Structural, electronic and mechanical properties of AgIn1− XGaXS2 (X= 0, 0.25, 0.50, 0.75, 1) chalcogenides. Indian J Phys 95(9), 1751–1756 (2021)

    Article  ADS  Google Scholar 

  64. J.P. Perdew et al., Perdew et al. reply. Phys. Rev. Lett. 101(23), 239702 (2008)

    Article  ADS  Google Scholar 

  65. S.-H. Song, Z.-X. Yuan, P. Xiao, Electrical properties of MnCr2O4 spinel. J. Mater. Sci. Lett. 22(10), 755–757 (2003)

    Article  Google Scholar 

  66. G. Tan et al., Kramers-Kronig transform for the surface energy loss function. J. Electron Spectrosc. Relat. Phenom. 142(2), 97–103 (2005)

    Article  Google Scholar 

  67. E. Winkler et al., Magnetocrystalline interactions in MnCr2O4 spinel. Phys. Rev. B 80(10), 104418 (2009)

    Article  ADS  Google Scholar 

  68. K. Sturm, Electron energy loss in simple metals and semiconductors. Adv. Phys. 31(1), 1–64 (1982)

    Article  ADS  Google Scholar 

  69. A. Nadeem et al., On the role of Zn doping on tuning the electronic and optical properties of MnCr2O4 spinel via Mn0.5Zn0.5Cr2O4 doping scheme: a first-principles quantum computational analysis. Phys. Scripta 97(4), 045812 (2022)

    Article  ADS  Google Scholar 

  70. K.H.L. Zhang, P-type transparent conducting oxides. J. Phys. Condens. Matter 28, 383002 (2016)

    Article  Google Scholar 

  71. H. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3(1), 1330001 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmat Iqbal Bashir.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal conflict of interest that could have appeared to influence the work reported in this paper.

Ethical approval

I Azmat Iqbal Bashir (Ph.D.) declare on behalf of all co-authors that the work is not submitted to any other journal at this stage. The work is original and is not published elsewhere. The work is an expansion in view of previous and ongoing research in the field. The references to the earlier work by others are given as correctly as possible. Acknowledgements to other works are given where applicable. All co-authors contributed to the research work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, A., Bashir, A.I., Azam, S. et al. Cd-doping-assisted tuning of transparency and conductivity of MnIn2O4 by density functional quantum theoretical approach. Eur. Phys. J. Plus 138, 328 (2023). https://doi.org/10.1140/epjp/s13360-023-03911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03911-8

Navigation