Skip to main content
Log in

Modeling heat bath and probing environmental temperature effect in gene expression

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The presented results in this study are focused on the theoretical modeling of protein syntheses by considering the environment temperature. Considering that temperature appears in the role of chemical potential in the process of protein synthesis, we can witness a different face of the mRNA and protein degradation rate effective mode and ranges. It seems that the difference between the analytical modeling results and the experimental results is due to the lack of attention to the limiting effect of temperature in the gene expression process. The inhibitory role of the protein degradation rate in the process becomes more prominent by considering the temperature, and the influence of the mRNA degradation rate on the increase in the mRNA level decreases. In addition, the modeling shows that the time required for the gene level to reach its maximum level will be an explicit function of the environment temperature. The tendency of the gene level to reach the constant value will be with fluctuations, while the fluctuation range in mRNA level is moderated by temperature. This study has tried to verify the predictions by the experimental results. The study of fractal dimension and entropy has determined the possibility of observing the limits and rhythm of changes in the protein synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. A.C. Rowat, D.A. Weitz, Understanding epigenetic regulation: tracking protein levels across multiple generations of cells. Eur. Phys. J. Spec. Top. 178(1), 71–80 (2009)

    Article  Google Scholar 

  2. G.E. Palade, A small particulate component of the cytoplasm. J. Biophys. Biochem. Cytol. 1(1), 59 (1955)

    Article  Google Scholar 

  3. B.C. Goodwin, Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul. 3, 425–437 (1965)

    Article  Google Scholar 

  4. T. Chen, H.L. He, G.M. Church, Modeling gene expression with differential equations. Biocomputing 99, 29–40 (1999)

    Google Scholar 

  5. O.G. Berg, A model for the statistical fluctuations of protein numbers in a microbial population. J. Theor. Biol. 71(4), 587–603 (1978)

    Article  ADS  Google Scholar 

  6. C. Li, M. Virgilio, K.L. Collins, J.D. Welch, Single-cell multi-omic velocity infers dynamic and decoupled gene regulation, in International Conference on Research in Computational Molecular Biology (2022) (pp. 297–299)

  7. D.S. Glass, X. Jin, K. Riedel, H. Ingmar, Nonlinear delay differential equations and their application to modeling biological network motifs. Nat. Commun. 12(1), 1788 (2021)

    Article  ADS  Google Scholar 

  8. L. Ham, D. Schnoerr, R.D. Brackston, M.P. Stumpf, Exactly solvable models of stochastic gene expression. J. Chem. Phys. 152(14), 144106 (2020)

    Article  ADS  Google Scholar 

  9. R.L. Malek, H. Sajadi, J. Abraham, M.A. Grundy, G.S. Gerhard, The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 138(3), 363–373 (2004)

    Google Scholar 

  10. M. Kurisawa, M. Yokoyama, T. Okano, Gene expression control by temperature with thermo-responsive polymeric gene carriers. J. Control. Release 69(1), 127–137 (2000)

    Article  Google Scholar 

  11. D.A. Charlebois, K. Hauser, S. Marshall, Gá. Balázsi, Multiscale effects of heating and cooling on genes and gene networks. Proc. Natl. Acad. Sci. 115(45), 10797–10806 (2018)

    Article  ADS  Google Scholar 

  12. G.B. Rivas, R. Teles-de-Freitas, M.G. Pavan, J.B. Lima, A.A. Peixoto, R.V. Bruno, Effects of light and temperature on daily activity and clock gene expression in two mosquito disease vectors. J. Biol. Rhythms 33(3), 272–288 (2018)

    Article  Google Scholar 

  13. Y. Song, Q. Chen, D. Ci, X. Shao, D. Zhang, Effects of high temperature on photosynthesis and related gene expression in poplar. BMC Plant Biol. 14(1), 1–20 (2014)

    Article  Google Scholar 

  14. J.E. Basconi, M.R. Shirts, Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. J. Chem. Theory Comput. 9(7), 2887–2899 (2013)

    Article  Google Scholar 

  15. B.S. Alexandrov, L.T. Wille, K.Ø. Rasmussen, A.R. Bishop, K.B. Blagoev, Bubble statistics and dynamics in double-stranded DNA. Phys. Rev. E 74(5), 050901 (2006)

    Article  ADS  Google Scholar 

  16. P.M. Kim, B. Tidor, Limitations of quantitative gene regulation models: a case study. Genome Res. 13(11), 2391–2395 (2003)

    Article  Google Scholar 

  17. N.A. Monk, Oscillatory expression of Hes1, p53, and NF-\(\kappa \)B driven by transcriptional time delays. Curr. Biol. 13(16), 1409–1413 (2003)

    Article  Google Scholar 

  18. S. Fathizadeh, S. Behnia, J. Ziaei, Engineering DNA molecule bridge between metal electrodes for high-performance molecular transistor: an environmental dependent approach. J. Phys. Chem. B 122(9), 2487–2494 (2018)

    Article  Google Scholar 

  19. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  20. T. Munakata, Mechanical and Langevin thermostats: Gulton staircase problem. Phys. Rev. E 59(5), 5045 (1999)

    Article  ADS  Google Scholar 

  21. As. Lemak, N.K. Balabaev, On the Berendsen thermostat. Mol. Simul. 13(3), 177–187 (1994)

    Article  Google Scholar 

  22. B. Lindner, Diffusion of particles subject to nonlinear friction and a colored noise. New J. Phys. 12(6), 063026 (2010)

    Article  ADS  Google Scholar 

  23. L. Chen, I.I. Hamarash, S. Jafari, K. Rajagopal, I. Hussain, Various bifurcations in the development of stem cells. Eur. Phys. J. Spec. Top. 231(5), 1015–1021 (2022)

    Article  Google Scholar 

  24. M.H. Jensen, S. Pigolotti, S. Krishna, Genetic oscillation patterns. Eur. Phys. J. Spec. Top. 178(1), 45–56 (2009)

    Article  MATH  Google Scholar 

  25. R.C. Hilborn, Chaos and nonlinear dynamics: an introduction for scientists and engineers (Oxford University Press on Demand, 2000)

  26. S. Behnia, F. Mobadersani, M. Yahyavi, A. Rezavand, Chaotic behavior of gas bubble in non-Newtonian fluid: a numerical study. Nonlinear Dyn. 74(3), 559–570 (2013)

    Article  MathSciNet  Google Scholar 

  27. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a time series. Phys. D: Nonlinear Phenom. 16(3), 285–317 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Y. Tu, W.J. Rappel, Adaptation of living systems. Ann. Rev. Condensed Matter Phys. 9, 183 (2018)

    Article  ADS  Google Scholar 

  29. M. Ghorbani, E.A. Jonckheere, P. Bogdan, Gene expression is not random: scaling, long-range cross-dependence, and fractal characteristics of gene regulatory networks. Front. Physiol. 9, 1446 (2018)

    Article  Google Scholar 

  30. S. Mandal, T. Roychowdhury, K. Chirom, A. Bhattacharya, Complex multifractal nature in Mycobacterium tuberculosis genome. Sci. Rep. 7(1), 1–13 (2017)

    Article  Google Scholar 

  31. S. Behnia, A. Akhshani, M. Panahi, A. Mobaraki, M. Ghaderian, Multifractal analysis of thermal denaturation based on the Peyrard–Bishop–Dauxois model. Phys. Rev. E 84(3), 031918 (2011)

    Article  ADS  Google Scholar 

  32. H. Hirata, Y. Bessho, H. Kokubu, Y. Masamizu, Sh. Yamada, J. Lewis, R. Kageyama, Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 36(7), 750–754 (2004)

    Article  Google Scholar 

  33. Ch. Huang, J. Cao, M. Xiao, Hybrid control on bifurcation for a delayed fractional gene regulatory network. Chaos, Solitons Fractals 87, 19–29 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ch.A. Chen, N. Ezzeddine, A. Shyu, Messenger RNA half-life measurements in mammalian cells. Methods Enzymol. 448, 335–357 (2008)

    Article  Google Scholar 

  35. L. You, J. Yin, Patterns of regulation from mRNA and protein time series. Metab. Eng. 2(3), 210–217 (2000)

    Article  Google Scholar 

  36. V. Jaquet, S. Wallerich, S. Voegeli, D. Túrós, E.C. Viloria, A. Becskei, Determinants of the temperature adaptation of mRNA degradation. Nucl. Acids Res. 50(2), 1092–1110 (2022)

    Article  Google Scholar 

  37. M. Gadgil, V. Kapur, WSh. Hu, Transcriptional response of Escherichia coli to temperature shift. Biotechnol. Prog. 21(3), 689–699 (2005)

    Article  Google Scholar 

  38. H. Niederholtmeyer, L. Xu, S.J. Maerkl, Real-time mRNA measurement during an in vitro transcription and translation reaction using binary probes. ACS Synth. Biol. 2(8), 411–417 (2013)

    Article  Google Scholar 

  39. Zh. Xu, Sh. Asakawa, A model explaining mRNA level fluctuations based on activity demands and RNA age. PLoS Comput. Biol. 17(7), 1009188 (2021)

    Article  ADS  Google Scholar 

  40. H. Th, M. Timmers, Lá. Tora, Transcript buffering: a balancing act between mRNA synthesis and mRNA degradation. Mol. Cell 72(1), 10–17 (2018)

    Article  Google Scholar 

  41. Y. Song, W. Xu, Y. Jiao, Bifurcation-and noise-induced tipping in two-parametric gene transcriptional regulatory system. Eur. Phys. J. Plus 137(1), 68 (2022)

    Article  ADS  Google Scholar 

  42. M.C. Palumbo, L. Farina, P. Paci, Kinetics effects and modeling of mRNA turnover. Wiley Interdiscip. Rev.: RNA 6(33), 327–336 (2015)

    Article  Google Scholar 

  43. C.R. Alonso, A complex ‘mRNA degradation code’ controls gene expression during animal development. Trends Genet. 28(2), 78–88 (2012)

    Article  Google Scholar 

  44. J.R. Graham, M.C. Hendershott, J. Terragni, G.M. Cooper, mRNA degradation plays a significant role in the program of gene expression regulated by phosphatidylinositol 3-kinase signaling. Mol. Cell. Biol. 30(22), 5295–5305 (2010)

    Article  Google Scholar 

  45. H. Tourriere, K. Chebli, J. Tazi, mRNA degradation machines in eukaryotic cells. Biochimie 84(8), 821–837 (2002)

    Article  Google Scholar 

  46. S.N. Politis, D. Mazurais, A. Servili, J.L. Zambonino-Infante, J.J. Miest, S.R. Sørensen, J. Tomkiewicz, I.A. Butts, Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae. PLoS One 12(8), 0182726 (2017)

    Article  Google Scholar 

  47. Ch.A. White-Ziegler, A.J. Malhowski, S. Young, Human body temperature (37 C) increases the expression of iron, carbohydrate, and amino acid utilization genes in Escherichia coli K-12. J. Bacteriol. 189(15), 5429–5440 (2007)

    Article  Google Scholar 

  48. J. Chen, V. Nolte, Ch. Schlötterer, Temperature-related reaction norms of gene expression: regulatory architecture and functional implications. Mol. Biol. Evol. 32(9), 2393–2402 (2015)

    Article  Google Scholar 

  49. C.R. Voolstra, J. Schnetzer, L. Peshkin, C.J. Randall, A.M. Szmant, Medina, Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genom. 10, 1–9 (2009)

    Article  Google Scholar 

  50. D. Wang, M. Li, J. Ma, X. Wang, J. Liu, Effects of temperature on cathepsin B, cathepsin D and acid phosphatase during embryo development of the hard tick Haemaphysalis longicornis. Exp. Appl. Acarol. 1–11 (2023)

  51. W. Shao, T. Guo, N.C. Toussaint, P. Xue, U. Wagner, L. Li, K. Charmpi, Y. Zhu, J. Wu, M. Buljan, Comparative analysis of mRNA and protein degradation in prostate tissues indicates high stability of proteins. Nat. Commun. 10(1), 1–8 (2019)

    Article  Google Scholar 

  52. A. Mehra, K.H. Lee, V. Hatzimanikatis, Insights into the relation between mRNA and protein expression patterns: I. Theoretical considerations. Biotechnol. Bioeng. 84(7), 822–833 (2003)

    Article  Google Scholar 

  53. Q. Lai, X. Zhao, J. Huang, V. Pham, K. Rajagopal, Monostability, bistability, periodicity and chaos in gene regulatory network. Eur. Phys. J. Spec. Top. 227(7), 719–730 (2018)

    Article  Google Scholar 

  54. H. Liu, M. Luo, J. Wen, mRNA stability in the nucleus. J. Zhejiang Univer. Sci. B 15(5), 444–454 (2014)

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Behnia.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, F., Behnia, S. Modeling heat bath and probing environmental temperature effect in gene expression. Eur. Phys. J. Plus 138, 248 (2023). https://doi.org/10.1140/epjp/s13360-023-03869-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03869-7

Navigation