Skip to main content
Log in

Feynman–Vernon influence functional approach for the damped driven oscillator in RLC circuit

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Feynman–Vernon influence functional formalism which is adequate for the study of dissipative dynamics is used to describe weakly coupled circuits. The classical behavior of the system formed by a resistance, electric and magnetic polarizations is characterized by the influence functional approach whose behavior, although linear in some sense, is not representable by systems of perfect oscillators. In addition, linear combinations of complex q-exponentials are used in representation of nonlinear circuits in which the solution of the correspondent nonlinear differentials equations is mapped in modified differentials equations for a new deformed variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This manuscript has been deposited in Research Square platform https://doi.org/10.21203/rs.3.rs-2288672/v1, title: ‘Feynman–Vernon influence functional approach for the damped driven oscillator in RLC circuit’.]

References

  1. R.P. Feynman, F.L. Vernon Jr., Ann. Phys. 24, 118 (1963)

    Article  ADS  Google Scholar 

  2. U. Weiss, Quantum Dissipative Systems, 4th edn. (World Scientific, Singapore, 2012)

    Book  MATH  Google Scholar 

  3. A.J. Leggett, S. Chakravarty, A.T. Dorsey, P.A. Matthew, A. Fisher, W. Zwerger. Garg, Rev. Mod. Phys. 59, 1 (1987)

    Article  ADS  Google Scholar 

  4. M. Grifoni, P. Haenggi, Phys. Rep. 304, 229 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. G. Habib, G. Kerschen, Physica D 332, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Fernandez-Garcia, M. Krupab, F. Clementa, Physica D 332, 9 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Z.G. Arenas, D.G. Barci, C. Tsallis, Phys. Rev. E 90, 032118 (2014)

    Article  ADS  Google Scholar 

  9. C. Tsallis, D.J. Bukman, Phys. Rev. E 54, R2197(R) (1996)

    Article  ADS  Google Scholar 

  10. A.R. Plastino, E.M.F. Curado, F.D. Nobre, C. Tsallis, Phys. Rev. E 97, 022120 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  11. M.S. Ribeiro, C. Tsallis, F.D. Nobre, Phys. Rev. E 88, 052107 (2013)

    Article  ADS  Google Scholar 

  12. C. Tsallis, E.K. Lenzi, Chem. Phys. 284, 341 (2002)

    Article  Google Scholar 

  13. F.D. Nobre, E.M.F. Curado, G.A. Rowlands, Physica A 334, 109 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. V. Schwammle, E.M.F. Curado, F.D. Nobre, Eur. Phys. J. B 71, 107 (2009)

    Article  ADS  Google Scholar 

  15. M.S. Ribeiro, F.D. Nobre, E.M.F. Curado, Entropy 13, 1928 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  17. L.S. Lima, Probab. Eng. Mech. 68, 103201 (2022)

    Article  Google Scholar 

  18. L.S. Lima, Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  19. L. dos Santos Lima, Entropy 24, 719 (2022)

    Article  Google Scholar 

  20. L.J.L. Cirto, L.S. Lima, F.D. Nobre, J. Stat. Mech. 04, P04012 (2015)

    Article  Google Scholar 

  21. L.S. Lima, Eur. Phys. J. B 90, 180 (2017)

    Article  ADS  Google Scholar 

  22. L.S. Lima, J. Mod. Phys. 11, 81 (2020)

    Article  Google Scholar 

  23. S.H. Strogatz, Nonlinear Dynamics and Chaos (Westview Press, Cambridge, MA, 1994)

    Google Scholar 

  24. S. Umarov, C. Tsallis, S. Steinberg, Milan J. Math. 76, 307 (2008)

    Article  MathSciNet  Google Scholar 

  25. T. Oikonomou, G.B. Gagci, Phys. Lett. A 374, 2225 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Yamano, Physica A 305, 486 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  27. E.P. Borges, J. Phys. A 31, 5281 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Jauregui, C. Tsallis, J. Math. Phys. 51, 063304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  29. M.J. Feigenbaum, J. Stat. Phys. 19, 25 (1978)

    Article  ADS  Google Scholar 

  30. P. Guidottia, Y. Shaob, Nonlinear Anal. 150, 114 (2017)

    Article  MathSciNet  Google Scholar 

  31. H. Beige, M. Diestelhorst, R. Foster, T. Krietsch, Chaos near structural phase transitions. Phase Transitions 37, 213 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by National Council for Scientific and Technological Development (CNPq) Brazil.

Funding

Funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 2449726168487062). Foundation for Research Support of the State of Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to this manuscript. Leonardo S. Lima has written the paper and performed the formal analysis.

Corresponding author

Correspondence to Leonardo S. Lima.

Ethics declarations

Conflict of interest

None conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, L.S., Almeida Arruda, L.G.d. Feynman–Vernon influence functional approach for the damped driven oscillator in RLC circuit. Eur. Phys. J. Plus 138, 284 (2023). https://doi.org/10.1140/epjp/s13360-023-03846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03846-0

Navigation