Skip to main content
Log in

Development of active shielding gamma probe: a simulation study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The aim of the present study is to evaluate a gamma probe with active shielding by using GEANT4 simulation framework. We used BGO scintillators both for gamma detection and active shielding from a point radioactive source, namely 140 keV gammas from \(^{99m}\hbox {Tc}\). All scintillators were coupled to the silicon photomultipliers with an active area of \(3\times 3\) \(\hbox {mm}^{2}\). The response of the gamma probe to radiation was simulated using the optical photon transportation available in the GEANT4 package. We used the simulation results to determine the sensitivity, spatial and angular resolution, and shielding efficiencies in the air and scattering medium for the proposed gamma probe model according to NEMA NU 3-2004 standards. The ability of the probe to find the direction of emission was also evaluated. The sensitivity of the probe was found between 1262 - 42284 cps/MBq in the scattering medium based on two scenarios based on active shielding use. In terms of FWHM, the spatial resolution in scattering medium at 30 mm source-to-probe distance was 31 mm and the angular resolution at the same distance was \(59^{\circ }\). The shielding effectiveness of the probe was in the range of 89.90 ± \(0.65\%\) and 97.20 ± \(0.19\%\). The emission directions of gammas were found with an error of less than 8°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

Access to the data presented in this paper can be provided and for this and any further inquiries about our work please contact the authors. This manuscript has associated data in a data repository. [Authors’ comment: The datasets used in this study are available from the corresponding author upon reasonable request.]

References

  1. H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J. Clin. 71(3), 209–249 (2021). https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. R.K. Halkar, J.N. Aarsvold. Intraoperative probes. J. of Nucl. Med. Technol. 27(3), 188–193 (1999). https://tech.snmjournals.org/content/jnmt/27/3/188.full.pdf

  3. O.E. Nieweg, P.J. Tanis, B.B. Kroon, The definition of a sentinel node. Ann. Surg. Oncol. 8(6), 538 (2001). https://doi.org/10.1007/s10434-001-0538-y

    Article  Google Scholar 

  4. M. Keshtgar, P. Ell, Sentinel lymph node detection and imaging. Eur. J. Nucl. Med. 26(1), 57–67 (1999). https://doi.org/10.1007/s002590050360

    Article  Google Scholar 

  5. J. Albertini, G. Lyman, C. Cox, T. Yeatman, L. Balducci, N. Ku, S. Shivers, C. Berman, K. Wells, D. Rapaport et al., Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 276(22), 1818–1822 (1996). https://doi.org/10.1001/jama.1996.03540220042028

    Article  Google Scholar 

  6. T. Kim, A.E. Giuliano, G.H. Lyman, Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma: a metaanalysis. Cancer 106(1), 4–16 (2006). https://doi.org/10.1002/cncr.21568

    Article  Google Scholar 

  7. S.P. Povoski, R.L. Neff, C.M. Mojzisik, D.M. O’Malley, G.H. Hinkle, N.C. Hall, D.A. Murrey, M.V. Knopp, E.W. Martin, A comprehensive overview of radioguided surgery using gamma detection probe technology. World J. Surg. Oncol. 7(1), 1–63 (2009). https://doi.org/10.1186/1477-7819-7-11

    Article  Google Scholar 

  8. P. Zanzonico, S. Heller, The intraoperative gamma probe: basic principles and choices available. Seminars Nucl. Med. 30, 33–48 (2000). https://doi.org/10.1016/S0001-2998(00)80060-4

    Article  Google Scholar 

  9. F.E. Costa, P.R. Rela, I.B. Oliveira, M.C. Pereira, M.M. Hamada, Surgical gamma probe with TlBr semiconductor for identification of sentinel lymph node. IEEE Trans. Nucl. Sci. 53(3), 1403–1407 (2006). https://doi.org/10.1109/TNS.2006.874472

    Article  ADS  Google Scholar 

  10. S. Heller, P. Zanzonico, Nuclear probes and intraoperative gamma cameras. Seminars Nucl. Med. 41, 166–181 (2011). https://doi.org/10.1053/j.semnuclmed.2010.12.004

    Article  Google Scholar 

  11. M. Kotzassarlidou, B. Hatzipavlidou, A. Makridou, P. Kostaki, N. Salem, Practical considerations in selecting and using intraoperative gamma probes. Nucl. Instrum. Methods. Phys. Res. A 527(1), 110–112 (2004). https://doi.org/10.1016/j.nima.2004.03.085

    Article  ADS  Google Scholar 

  12. E.J. Hoffman, M.P. Tornai, M. Janecek, B.E. Patt, J.S. Iwanczyk, Intraoperative probes and imaging probes. Eur. J. of Nucl. Med. 26(8), 913–935 (1999). https://doi.org/10.1007/s002590050468

    Article  Google Scholar 

  13. N.P. Alazraki, D. Eshima, L.A. Eshima, S.C. Herda, D.R. Murray, J.P. Vansant, A.T. Taylor, Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers. Seminars Nucl. Med. 27, 55–67 (1997). https://doi.org/10.1016/S0001-2998(97)80036-0

    Article  Google Scholar 

  14. V. Kovaltchouk, G. Lolos, Z. Papandreou, K. Wolbaum, Comparison of a silicon photomultiplier to a traditional vacuum photomultiplier. Nucl. Instrum. Methods. Phys. Res. A 538(1–3), 408–415 (2005). https://doi.org/10.1016/j.nima.2004.08.136

    Article  ADS  Google Scholar 

  15. P. Buzhan, B. Dolgoshein, A. Ilyin, V. Kantserov, V. Kaplin, A. Karakash, A. Pleshko, E. Popova, S. Smirnov, Y. Volkov et al., The advanced study of silicon photomultiplier. Adv. Technol.-Part Phys. 45, 717–728 (2002). https://doi.org/10.1142/9789812776464_0101

    Article  ADS  Google Scholar 

  16. D.W. Holdsworth, H.N. Nikolov, S.I. Pollmann, 3D-printed focused collimator for intra-operative gamma-ray detection. Med. Imag. 2017: Phys. Med. Imaging 10132, 101321 (2017). https://doi.org/10.1117/12.2256051

    Article  Google Scholar 

  17. R. Pani, R. Pellegrini, M. Cinti, M. Longo, R. Donnarumma, A. D’Alessio, C. Borrazzo, A. Pergola, S. Ridolfi, G. De Vincentis, Development of a novel gamma probe for detecting radiation direction. J. Instrum. 11(01), 01002 (2016). https://doi.org/10.1088/1748-0221/11/01/C01002

    Article  Google Scholar 

  18. S. Agostinelli, J. Allison, Ka. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, Geant4-a simulation toolkit. Nucl. Instrum. Methods. Phys. Res. A 506(3), 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  19. Saint Gobain Crystals: BGO: Bismuth Germanate Scintillation Material. https://www.crystals.saint-gobain.com/sites/hps-mac3-cma-crystals/files/2021-09/BGO-material-data-sheet.pdf. Accessed 10 (June 2022)

  20. D. Wydra, R. Matuszewski, G. Romanowicz, T. Bandurski, Evaluation of surgical gamma probes for sentinel node localization in cervical and vulvar cancer. Nucl. Med. Rev. 8(2), 105–110 (2005) https://journals.viamedica.pl/nuclear_medicine_review/article/download/15295/12126

  21. National Electrical Manufacturers Association: Performance measurements and quality control guidelines for non-imaging intraoperative gamma probes. NEMA Standards Publication NU 3-2004 (2004). https://www.nema.org/docs/default-source/standards-document-library/nu3.pdf

  22. B. Batteson. GEANT4 simulation of fast neutron interactions in heavy oxide scintillators. PhD thesis, Monterey, CA; Naval Postgraduate School (2019). https://calhoun.nps.edu/bitstream/handle/10945/63506/19Sep_Batteson_Bruce.pdf

  23. R. Ogawara, M. Ishikawa, Signal pulse emulation for scintillation detectors using Geant4 Monte Carlo with light tracking simulation. Rev. Sci. Instrum. 87(7), 075114 (2016). https://doi.org/10.1063/1.4959186

    Article  ADS  Google Scholar 

  24. Hamamatsu Photonics: S13360 series datasheet. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s13360_series_kapd1052e.pdf. Accessed 10 (June 2022)

  25. Geant Collaboration: Physics reference manual documentation, release 10.6 (2019). https://geant4.kntu.ac.ir/Dorsapax/Data/Sub_207/File/PhysicsReferenceManual.pdf

  26. M. Kandemir, A. Cakir, Simulation and efficiency studies of optical photon transportation and detection with plastic antineutrino detector modules. Nucl. Instrum. Methods. Phys. Res. A 898, 30–39 (2018). https://doi.org/10.1016/j.nima.2018.04.059

    Article  ADS  Google Scholar 

  27. J. Nilsson, V. Cuplov, M. Isaksson, Identifying key surface parameters for optical photon transport in GEANT4/GATE simulations. Appl. Radiat. Isotopes 103, 15–24 (2015). https://doi.org/10.1016/j.apradiso.2015.04.017

    Article  Google Scholar 

  28. G. Llosa et al., Energy, timing and position resolution studies with 16-pixel silicon photomultiplier matrices for small animal PET. IEEE Trans. Nucl. Sci. 56(5), 2586–2593 (2009). https://doi.org/10.1109/TNS.2009.2030191

    Article  ADS  Google Scholar 

  29. S. Kaviani, N. Zeraatkar, S. Sajedi, N. Gorjizadeh, M. Farahani, P. Ghafarian, G. El Fakhri, H. Sabet, M. Ay, Development and characterization of a compact hand-held gamma probe system, SURGEOGUIDE, based on NEMA NU3-2004 standards. J. Instrum. 11(12), 12004 (2016). https://doi.org/10.1088/1748-0221/11/12/T12004

    Article  Google Scholar 

  30. R. Pani et al., Revisited position arithmetics for LaBr 3: Ce continuous crystals. Nucl. Phys. B-Proc. Suppl. 197(1), 383–386 (2009). https://doi.org/10.1016/j.nuclphysbps.2009.10.109

    Article  ADS  Google Scholar 

  31. H. Wengenmair, J. Kopp, J. Sciuk. Quality Criteria of Gamma Probes: Requirements and Future Developments, pp. 113–125. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/3-540-26393-4_12

  32. C. Chiesa, F. Toscano, M. Mariani, E. Bombardieri, Physical performance parameters of intraoperative probes (Springer, New York, 2008)

    Book  Google Scholar 

  33. A. Radnia, H. Abdollahzadeh, B. Teimourian, M.H. Farahani, M.E. Akbari, H. Zaidi, M.R. Ay, Development and characterization of an all-in-one gamma probe with auto-peak detection for sentinel lymph node biopsy based on NEMA NU3-2004 standard. Ann. Nucl. Med. 35(4), 438–446 (2021). https://doi.org/10.1007/s12149-021-01581-z

    Article  Google Scholar 

  34. M. Zamburlini, K. Keymeulen, M. Bemelmans, B. Brans, G.J. Kemerink, Comparison of sentinel gamma probes for Tc-99m breast cancer surgery based on NEMA NU3-2004 standard. Nucl. Med. Commun. 30(11), 854–861 (2009). https://doi.org/10.1097/MNM.0b013e32832f34e7

    Article  Google Scholar 

  35. Crystal Photonics: Straight Gamma Probe HiSens. https://crystal-photonics.com/enu/products/probe-straight--enu.htm. Accessed 21 (December 2022)

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No: 121F291).

Author information

Authors and Affiliations

Authors

Contributions

Simulations and analysis were performed by OBK, TY and EI The draft of the manuscript was written by OBK and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to O. B. Kolcu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolcu, O.B., Yetkin, T. & Iren, E. Development of active shielding gamma probe: a simulation study. Eur. Phys. J. Plus 138, 169 (2023). https://doi.org/10.1140/epjp/s13360-023-03792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03792-x

Navigation