Skip to main content
Log in

Computational analysis of heat transfer via heatlines for MHD natural convection ferrofluid flow inside the U-shaped cavity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This work contains computational simulation of natural convection through U-shaped cavity saturated with water-based ferroparticles under the impact of magneto-hydrodynamic (MHD). Uniform and linear heat has been provided to an enclosure through the bottom and side walls, respectively, whereas the remaining walls are kept adiabatic. Physical problem has been expressed mathematically with the help of Navier–Stokes equations coupled with energy equation. Galerkin’s weighted residual technique of finite element simulation is adopted to convert the system of nonlinear partial differential equations (PDEs) into a nonlinear algebraic system and has been further solved using the Newton–Raphson method. Obtained numerical results have shown through graphs of streamlines, heatlines, isotherms, local and average Nusselt numbers against the wide ranges of parameters such as concentration of ferroparticles (φ = 0.0–0.06), Rayleigh (Ra = 104–107) and Hartmann number (Ha = 0–100) with Prandtl (Pr = 6.83). Results display that the influence of ferroparticles \((\phi )\) in the base fluid (water) increased the intensity bowls of streamlines and heat transfer rate within the enclosure. Furthermore, the reversed behavior has noticed for the case of increasing Hartmann number. The outcomes of the current work can be useful in optimizing designs and obtaining geometric parameters for effective energy transport in heat exchangers, solar collectors, nuclear magnetic resonance imaging, chemical reactors and dye removal from textile wastewater through advanced oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data generated or analyzed during this study are included in this published article.]

References

  1. S. Ostrach, Natural convection in enclosures. J. Heat Transf. 110, 1175–1190 (1988). https://doi.org/10.1115/1.3250619.

    Article  Google Scholar 

  2. T. Fusegi, J.M. Hyun, K. Kuwahara, B. Farouk, A numerical study of three dimensional natural convection in a differentially heated cubical enclosure. J. Heat Mass Transf. 34, 1543–1557 (1991). https://doi.org/10.1016/0017-9310(91)90295-p

    Article  Google Scholar 

  3. M. Hajmohammadi, M. Rahmani, A. Campo, O. Joneydi Shariatzadeh, Optimal design of unequal heat flux elements for optimized heat transfer inside a rectangular duct. Energy 68, 609–616 (2014). https://doi.org/10.1016/j.energy.2014.02.011.

    Article  Google Scholar 

  4. N. Yucel, H. Turkoglu, Natural convection in rectangular enclosures with partial heating and cooling. Heat Mass Transf. 29, 471–477 (1994). https://doi.org/10.1007/bf01539499.

    Article  Google Scholar 

  5. B. Kanimozhi, M. Muthtamilselvan, Q.M. Al-Mdallal, B. Abdalla, Combined Marangoni and Buoyancy convection in a porous annular cavity filled with Ag–MgO/water hybrid nanofluid. Curr. Nanosci. 19(1), 4–14 (2023). https://doi.org/10.2174/1573413717666210921153441.

    Article  ADS  Google Scholar 

  6. B. Kanimozhi, M. Muthtamilselvan, Q.M. Al-Mdallal, B. Abdalla, Coupled buoyancy and Marangoni convection in a hybrid nanofluid-filled cylindrical porous annulus with a circular thin baffle. Eur. Phys. J. Spec. Top. 231(13–14), 2645–2660 (2022). https://doi.org/10.1140/epjs/s11734-022-00594-7.

    Article  Google Scholar 

  7. A.A. Bozhko, G. Putin, T. Tynjala, P. Sarkomaa, Experimental and numerical investigation of wave ferrofluid convection. J. Magn. Magn. Mater. 316, 433–435 (2007). https://doi.org/10.1016/j.jmmm.2007.03.105.

    Article  ADS  Google Scholar 

  8. T.C. Jue, Analysis of combined thermal and magnetic convection ferrofluid flow in a cavity. Int. Commun. Heat Mass Transf. 33, 846–852 (2006). https://doi.org/10.1016/j.icheatmasstransfer.2006.02.001.

    Article  Google Scholar 

  9. P. Bissell, P. Bates, R. Chantrell, K. Raj, J. Wyman, Cavity magnetic field measurements in ferrofluids. J. Magn. Magn. Mater. 39, 27–29 (1983). https://doi.org/10.1016/0304-8853(83)90390-6.

    Article  ADS  Google Scholar 

  10. M. Pirmohammadi, M. Ghassemi, Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int. Commun. Heat Mass Transf. 36, 776–780 (2009). https://doi.org/10.1016/j.icheatmasstransfer.2009.03.023.

    Article  Google Scholar 

  11. B. Iftikhar, M.A. Siddiqui, T. Javed, Natural convection and thermal radiation analysis inside the square cavity filled with non-Newtonian fluid via heatlines and entropy generation. Phys. Scr. 97(2), 025202 (2022). https://doi.org/10.1088/1402-4896/ac48a8.

    Article  ADS  Google Scholar 

  12. C. Sivaraj, M.A. Sheremet, MHD natural convection and entropy generation of ferrofluids in a cavity with a non-uniformly heated horizontal plate. Int. J. Mech. Sci 149, 326–337 (2018). https://doi.org/10.1016/j.ijmecsci.2018.10.017.

    Article  Google Scholar 

  13. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab. (ANL), Argonne, IL (United States). (No. ANL/MSD/CP-84938; CONF-951135–29 (1995)

  14. L. Godson, B. Raja, D.M. Lal, S.E.A. Wongwises, Enhancement of heat transfer using nanofluids—an overview. Renew. Sustain. Energy Rev. 14, 629–641 (2010). https://doi.org/10.1016/j.rser.2009.10.004.

    Article  Google Scholar 

  15. R. Saidur, K.Y. Leong, H.A. Mohammed, A review on applications and challenges of nanofluids. Renew. Sustain. Energy Rev. 15, 1646–1668 (2011). https://doi.org/10.1016/j.rser.2010.11.035.

    Article  Google Scholar 

  16. P. Sivashanmugam, Application of nanofluids in heat transfer. An overview of heat transfer phenomena, 16 (2012), pp. 411–440. https://doi.org/10.5772/52496.

  17. A. Akbarzadeh, M. Samiei, S. Davaran, Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7, 1–13 (2012). https://doi.org/10.1186/1556-276x-7-144.

    Article  Google Scholar 

  18. S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819–16845 (2011). https://doi.org/10.1039/c1jm11845e.

    Article  Google Scholar 

  19. S.K. Brar, M. Verma, R.D. Tyagi, R.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag. 30, 504–520 (2010). https://doi.org/10.1016/j.wasman.2009.10.012.

    Article  Google Scholar 

  20. J.L. Neuringer, R.E. Rosensweig, Ferrohydrodynamics. Phys. Fluids 7, 1927–1937 (1964). https://doi.org/10.1063/1.1711103.

    Article  ADS  MathSciNet  Google Scholar 

  21. R.E. Rosensweig, Magnetic fluids. Annu. Rev. Fluid Mech. 19, 437–461 (1987). https://doi.org/10.1146/annurev.fl.19.010187.002253.

    Article  ADS  MATH  Google Scholar 

  22. S. Mojumder, S. Saha, S. Saha, M.A.H. Mamun, Effect of magnetic field on natural convection in a C-shaped cavity filled with ferrofluid. Procedia Eng. 105, 96–104 (2015). https://doi.org/10.1016/j.proeng.2015.05.012.

    Article  Google Scholar 

  23. T. Javed, M.A. Siddiqui, Effect of MHD on heat transfer through ferrofluid inside a square cavity containing obstacle/heat source. Int. J. Therm. Sci. 125, 419–427 (2018). https://doi.org/10.1016/j.ijthermalsci.2017.12.009.

    Article  Google Scholar 

  24. K.M. Rabbi, S. Saha, S. Mojumder, M.M. Rahman, R. Saidur, T.A. Ibrahim, Numerical investigation of pure mixed convection in a ferrofluid-filled lid-driven cavity for different heater configurations. Alex. Eng. J. 55, 127–139 (2016). https://doi.org/10.1016/j.aej.2015.12.021.

    Article  Google Scholar 

  25. F. Selimefendigil, H.F. Öztop, Forced convection of ferrofluids in a vented cavity with a rotating cylinder. Int. J. Therm. Sci. 86, 258–275 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.07.007.

    Article  Google Scholar 

  26. R. Moradi, A. Mahyari, M.B. Gerdroodbary, A. Abdollahi, Y. Amini, Shape effect of cavity flameholder on mixing zone of hydrogen jet at supersonic flow. Int. J. Hydrog. Energy 43, 16364–16372 (2018). https://doi.org/10.1016/j.ijhydene.2018.06.166.

    Article  Google Scholar 

  27. C. Ozalp, A.H.M.E.T. Pinarbasi, B. Sahin, Experimental measurement of flow past cavities of different shapes. Exp. Therm. Fluid Sci. 34, 505–515 (2010). https://doi.org/10.1016/j.expthermflusci.2009.11.003.

    Article  Google Scholar 

  28. M.A.Y. Bakier, Flow in open C-shaped cavities: how far does the change in boundaries affect nanofluid. Int. J. Eng. Sci. Technol. 17, 116–130 (2014). https://doi.org/10.1016/j.jestch.2014.04.007.

    Article  Google Scholar 

  29. T. Basak, S. Roy, Role of ‘Bejan’s heatlines’ in heat flow visualization and optimal thermal mixing for differentially heated square enclosures. Int. J. Heat Mass Transf. 51, 3486–3503 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.033.

    Article  MATH  Google Scholar 

  30. V.V. Syzrantsev, K.V. Zobov, A.P. Zavjalov, S.P. Bardakhanov, The associated layer and viscosity of nanoliquids. Dokl. Phys. 60, 46–48 (2015). https://doi.org/10.1134/s1028335815010103.

    Article  ADS  Google Scholar 

  31. S. Mukherjee, P.C. Mishra, P. Chaudhuri, Stability of heat transfer nanofluids—a review. ChemBioEng Rev. 5, 312–333 (2018). https://doi.org/10.1002/cben.201800008.

    Article  Google Scholar 

  32. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Res. 5, 167–171 (2003). https://doi.org/10.1023/a:1024438603801.

    Article  ADS  Google Scholar 

  33. H.C. Birkman, The viscosity of concentrated suspensions and solution. J. Chem. Phys. 20, 571 (1952). https://doi.org/10.1063/1.1700493.

    Article  ADS  Google Scholar 

  34. J.C. Maxwell-Garnett, Colours in metal glasses and in metallic films. Phil. Trans. R. Soc. Lond. A 203, 385–420 (1904). https://doi.org/10.1098/rsta.1904.0024.

    Article  ADS  MATH  Google Scholar 

  35. J.N. Reddy, Introduction to the Finite Element Method (McGraw-Hill, 2019). https://doi.org/10.1093/acprof:oso/9780198525295.003.0002.

    Google Scholar 

  36. V.A.F. Costa, Unification of the streamline, heatline and massline methods for the visualization of two-dimensional transport phenomena. Int. J. Heat Mass Transf. 42, 27–33 (1999). https://doi.org/10.1016/s0017-9310(98)00138-0.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babar Iftikhar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iftikhar, B., Siddiqui, M.A. & Javed, T. Computational analysis of heat transfer via heatlines for MHD natural convection ferrofluid flow inside the U-shaped cavity. Eur. Phys. J. Plus 138, 164 (2023). https://doi.org/10.1140/epjp/s13360-023-03769-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03769-w

Navigation