Skip to main content
Log in

Effects of hydrostatic pressure on the thermoelectric performance of BaZrS3

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently, the BaZrS3 is considered suitable for thermoelectric (TE) applications due to relatively small band gap and low lattice thermal conductivity. To unravel the TE transport properties of BaZrS3 under high-pressure condition, first-principles calculations combined with semi-classical Boltzmann transport theory are carried out to investigate the effects of pressure on its TE transport properties. The nonlinear relationship between lattice thermal conductivity and pressure has been observed, which can be explained by the irregular response behavior of phonon lifetime to pressure, due to the synergetic effects of lattice anharmonicity and three-phonon scattering channel. Also, application of hydrostatic pressure can tune the electronic structure of BaZrS3, i.e., both band effective mass and band degeneracy generally decrease with the increasing pressure, which causes decrease in the Seebeck coefficient and increase in the electrical conductivity, ultimately leading to reduced power factor. The increased thermal conductivity together with decreased power factor results in a decrease in optimal figure of merit value for BaZrS3. The presented results, thus, suggest that the TE properties of BaZrS3 is degraded under hydrostatic pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from corresponding author upon reasonable request.]

References

  1. Y.H. Li, J.Y. Liu, X.Y. Wang, J.W. Hong, Appl. Phys. Lett. 119, 243901 (2021). https://doi.org/10.1063/5.0075135

    Article  ADS  Google Scholar 

  2. K. Biswas, J.Q. He, I.D. Blum, I. Chun, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 490, 414–418 (2012). https://doi.org/10.1038/nature11439

    Article  ADS  Google Scholar 

  3. X.L. Su, P. Wei, H. Li, W. Liu, Y.G. Yan, P. Li, C.Q. Su, C.J. Xie, W.Y. Zhao, P.C. Zhai, Q.J. Zhang, X.F. Tang, C. Uher, Adv. Mater. 29, 1602013 (2017). https://doi.org/10.1002/adma.201602013

    Article  Google Scholar 

  4. K.P. Zhao, K. Liu, Z.M. Yue, Y.C. Wang, Q.F. Song, J. Li, M.J. Guan, Q. Xu, P.F. Qiu, H. Zhu, L.D. Chen, X. Shi, Adv. Mater. 31, 1903480 (2019). https://doi.org/10.1002/adma.201903480

    Article  Google Scholar 

  5. H.P. Hu, K.Y. Xia, Y.C. Wang, C.G. Fu, T.J. Zhu, X.B. Zhao, J. Mater. Sci. Technol. 91, 241–250 (2021). https://doi.org/10.1016/j.jmst.2021.01.097

    Article  Google Scholar 

  6. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

    Article  ADS  Google Scholar 

  7. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G.J. Snyder, Nature 473, 66–69 (2011). https://doi.org/10.1038/nature09996

    Article  ADS  Google Scholar 

  8. M. Li, M. Hong, X. Tang, Q. Sun, W.Y. Lyu, S.D. Xu, L.Z. Kou, M. Dargusch, J. Zou, Z.G. Chen, Nano Energy 73, 104740 (2020). https://doi.org/10.1016/j.nanoen.2020.104740

    Article  Google Scholar 

  9. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X.A. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, Science 320, 634–638 (2008). https://doi.org/10.1126/science.1156446

    Article  ADS  Google Scholar 

  10. L.C. Chen, H. Yu, H.J. Pang, B.B. Jiang, L. Su, X. Shi, L.D. Chen, X.J. Chen, Mater. Today Phys. 5, 64–71 (2018). https://doi.org/10.1016/j.mtphys.2018.05.004

    Article  Google Scholar 

  11. L.C. Chen, P.Q. Chen, W.J. Li, Q. Zhang, V.V. Struzhkin, A.F. Goncharov, Z.F. Ren, X.J. Chen, Nat. Mater. 18, 1321–1326 (2019). https://doi.org/10.1038/s41563-019-0499-9

    Article  ADS  Google Scholar 

  12. J.L. Baker, C. Park, C. Kenney-Benson, V.K. Sharma, V. Kanchana, G. Vaitheeswaran, C.J. Pickard, A. Cornelius, N. Velisavljevic, R.S. Kumar, J. Phys. Chem. Lett. 12, 1046–1051 (2021). https://doi.org/10.1021/acs.jpclett.0c03609

    Article  Google Scholar 

  13. T.T. Jia, J. Carrete, Z.Z. Feng, S.P. Guo, Y.S. Zhang, G.K.H. Madsen, Phys. Rev. B 102, 125204 (2020). https://doi.org/10.1103/PhysRevB.102.125204

    Article  ADS  Google Scholar 

  14. E. Osei-Agyemang, G. Balasubramanian, Acs Appl. Energy Mater. 3, 1139–1144 (2020). https://doi.org/10.1021/acsaem.9b02185

    Article  Google Scholar 

  15. N. Wang, M.L. Li, H.Y. Xiao, X.T. Zu, L. Qiao, Phys. Rev. Appl. 13, 024038 (2020). https://doi.org/10.1103/PhysRevApplied.13.024038

    Article  ADS  Google Scholar 

  16. J. Navratil, J. Horak, T. Plechacek, S. Kamba, P. Lost’ak, J.S. Dyck, W. Chen, C. Uher, J. Solid State Chem. 177, 1704–1712 (2004). https://doi.org/10.1016/j.jssc.2003.12.031

    Article  ADS  Google Scholar 

  17. E. Osei-Agyemang, N. Koratkar, G. Balasubramanian, J. Mater. Chem. C 9, 3892–3900 (2021). https://doi.org/10.1039/D1TC00374G

    Article  Google Scholar 

  18. N. Gross, Y.Y. Sun, S. Perera, H.L. Hui, X.C. Wei, S.B. Zhang, H. Zeng, B.A. Weinstein, Phys. Rev. Appl. 8, 044014 (2017). https://doi.org/10.1103/PhysRevApplied.8.044014

    Article  ADS  Google Scholar 

  19. G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993). https://doi.org/10.1103/PhysRevB.47.558

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  ADS  Google Scholar 

  21. P.E. Blöchl, Phys. Rev. B 50, 17953–17979 (1994). https://doi.org/10.1103/PhysRevB.50.17953

    Article  ADS  Google Scholar 

  22. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406

    Article  ADS  Google Scholar 

  23. J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207–8215 (2003). https://doi.org/10.1063/1.1564060

    Article  ADS  Google Scholar 

  24. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  25. M.L. Li, N. Wang, M. Jiang, H.Y. Xiao, H.B. Zhang, Z.J. Liu, X.T. Zu, L. Qiao, J. Mater. Chem. C 7, 11029–11039 (2019). https://doi.org/10.1039/C9TC02188D

    Article  Google Scholar 

  26. W. Li, J. Carrete, N.A. Katcho, N. Mingo, Comput. Phys. Commun. 185, 1747–1758 (2014). https://doi.org/10.1016/j.cpc.2014.02.015

    Article  ADS  Google Scholar 

  27. A. Togo, I. Tanaka, Scripta Mater. 108, 1–5 (2015). https://doi.org/10.1016/j.scriptamat.2015.07.021

    Article  ADS  Google Scholar 

  28. R. Lelieveld, D.J.A.C.S.B.S.C. Ijdo, C. Chemistry 36, 2223–2226 (1980). https://doi.org/10.1107/S056774088000845X

    Article  Google Scholar 

  29. S.Y. Niu, B.Y. Zhao, K. Ye, E. Bianco, J.Y. Zhou, M.E. McConney, C. Settens, R. Haiges, R. Jaramillo, J. Ravichandran, J. Mater. Res. 34, 3819–3826 (2019). https://doi.org/10.1557/jmr.2019.348

    Article  ADS  Google Scholar 

  30. J.W. Bennett, I. Grinberg, A.M. Rappe, Phys. Rev. B 79, 235115 (2009). https://doi.org/10.1103/PhysRevB.79.235115

    Article  ADS  Google Scholar 

  31. K.P. Yuan, X.L. Zhang, D.W. Tang, M. Hu, Phys. Rev. B 98, 144303 (2018). https://doi.org/10.1103/PhysRevB.98.144303

    Article  ADS  Google Scholar 

  32. G.A. Slack, Solid State Phys. 34, 1–71 (1979). https://doi.org/10.1016/S0081-1947(08)60359-8

    Article  Google Scholar 

  33. W. Li, N. Mingo, Phys. Rev. B 89, 184304 (2014). https://doi.org/10.1103/PhysRevB.89.184304

    Article  ADS  Google Scholar 

  34. J.Y. Liu, T.A. Strobel, H.D. Zhang, D. Abernathy, C. Li, J.W. Hong, Mater. Today Phys. 21, 100566 (2021). https://doi.org/10.1016/j.mtphys.2021.100566

    Article  Google Scholar 

  35. W. Liu, Y.E. Xie, J.R. Yuan, Y.P. Chen, Nanoscale 14, 8797–8805 (2022). https://doi.org/10.1039/D2NR01848A

    Article  Google Scholar 

  36. H.J. Pang, L.C. Chen, H. Yu, P.F. Qiu, G.H. Zhong, Q. Peng, X.J. Chen, Phys. Rev. B 105, 094115 (2022). https://doi.org/10.1103/PhysRevB.105.094115

    Article  ADS  Google Scholar 

  37. S.Y. Niu, H.X. Huyan, Y. Liu, M. Yeung, K. Ye, L. Blankemeier, T. Orvis, D. Sarkar, D.J. Singh, R. Kapadia, J. Ravichandran, Adv. Mater. 29, 1604733 (2017). https://doi.org/10.1002/adma.201604733

    Article  Google Scholar 

  38. S. Perera, H.L. Hui, C. Zhao, H.T. Xue, F. Sun, C.H. Deng, N. Gross, C. Milleville, X.H. Xu, D.F. Watson, B. Weinstein, Y.Y. Sun, S.B. Zhang, H. Zeng, Nano Energy 22, 129–135 (2016). https://doi.org/10.1016/j.nanoen.2016.02.020

    Article  Google Scholar 

  39. W.W. Meng, B. Saparov, F. Hong, J.B. Wang, D.B. Mitzi, Y.F. Yan, Chem. Mater. 28, 821–829 (2016). https://doi.org/10.1021/acs.chemmater.5b04213

    Article  Google Scholar 

  40. S. Sharma, Z. Ward, K. Bhimani, K. Li, A. Lakhnot, R. Jain, S.F. Shi, H. Terrones, N. Koratkar, ACS Appl. Electron. Mater. 3, 3306–3312 (2021). https://doi.org/10.1021/acsaelm.1c00575

    Article  Google Scholar 

  41. G.J. Tan, L.D. Zhao, M.G. Kanatzidis, Chem. Rev. 116, 12123–12149 (2016). https://doi.org/10.1021/acs.chemrev.6b00255

    Article  Google Scholar 

  42. Y. Wang, L. Yang, X.L. Shi, X. Shi, L.D. Chen, M.S. Dargusch, J. Zou, Z.G. Chen, Adv. Mater. 31, 1807916 (2019). https://doi.org/10.1002/adma.201807916

    Article  Google Scholar 

  43. A. Majumdar, A.A. Adeleke, S. Chakraborty, R. Ahuja, J. Mater. Chem. C 8, 16392–16403 (2020). https://doi.org/10.1039/D0TC04516K

    Article  Google Scholar 

  44. E. Osei-Agyemang, C.E. Adu, G. Balasubramanian, Adv. Theory Simul. 2, 1900060 (2019). https://doi.org/10.1002/adts.201900060

    Article  Google Scholar 

  45. M.A. Khan, H.A. Alburaih, N.A. Noor, A. Dahshan, Sol. Energy 225, 122–128 (2021). https://doi.org/10.1016/j.solener.2021.07.026

    Article  ADS  Google Scholar 

  46. H. Shahmohamadi, S.S. Naghavi, ACS Appl. Mater. Interfaces. 13, 14189–14197 (2021). https://doi.org/10.1021/acsami.0c22842

    Article  Google Scholar 

  47. D.L. Guo, C.G. Hu, Y. Xi, K.Y. Zhang, J. Phys. Chem. C 117, 21597–21602 (2013). https://doi.org/10.1021/jp4080465

    Article  Google Scholar 

  48. L.Q. Xu, Y.P. Zheng, J.C. Zheng, Phys. Rev. B 82, 195102 (2010). https://doi.org/10.1103/PhysRevB.82.195102

    Article  ADS  Google Scholar 

  49. W. Ibarra-Hernandez, M.J. Verstraete, J.Y. Raty, Phys. Rev. B 90, 245204 (2014). https://doi.org/10.1103/PhysRevB.90.245204

    Article  ADS  Google Scholar 

  50. D. Han, X.H. Yang, M. Du, G.M. Xin, J.C. Zhang, X.Y. Wang, L. Cheng, Nanoscale 13, 7176–7192 (2021). https://doi.org/10.1039/D0NR09169C

    Article  Google Scholar 

  51. S. Huang, X.W. Liu, W.W. Zheng, J.J. Guo, R. Xiong, Z.Y. Wang, J. Shi, J. Mater. Chem. A 6, 20069–20075 (2018). https://doi.org/10.1039/C8TA07350C

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the NSFC of China (U1930120, 52072059), the Foundation of Sichuan Excellent Young Talents (2021JDJQ0015), Fundamental Research Funds for the Central Universities (ZYGX2020J023), Natural Science Foundation of Chongqing [CSTB2022NSCQ-MSX0441, CSTB2022NSCQ-MSX1365]. The authors acknowledge Beijing PARATERA Tech CO., Ltd. for providing HPC resources that have contributed to the research results reported within this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Qiao or Haiyan Xiao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 793 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhao, S., Li, B. et al. Effects of hydrostatic pressure on the thermoelectric performance of BaZrS3. Eur. Phys. J. Plus 138, 149 (2023). https://doi.org/10.1140/epjp/s13360-023-03741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03741-8

Navigation