Skip to main content

Advertisement

Log in

Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The β-PbO has low electrical conductivity relative to α-PbO which hinders its application in optoelectronics and other technological devices. The structural, electrical, and optical properties of Co2+, Ni2+, Cu2+, Li+, and Sn2+-doped β-PbO at the Pb site were investigated in this work using Quantum espresso as a DFT tool. The GGA and LDA exchange functionals were used for band structure calculations. The indirect band gap property is indicated by the calculation of electronic band structure, with spin up state band gap values of 2.28 eV, 0.68 eV, 1.01 eV, 1.57 eV, 1.79 eV, and 1.76 eV for pristine, Co2+, Ni2+, Cu2+, Li+, and Sn2+-doped β-PbO, respectively. The spin down states band gap of Co2+ and Ni2+ was 0.1 eV and 0.32 eV, whereas other dopants and pristine β-PbO equal with spin up states. The PDOS calculation shows how each orbital contributes to the formation of deep level valence band, shallow level valence band, and conduction band states. Dopant effects on optical properties such as JDOS, dielectric functions, refractive index, extinction coefficient, reflectivity, absorption coefficient, electron energy loss spectrum, and optical conductivity were thoroughly discussed. This research provides in-depth functional characteristics for guiding laboratory working experiments and the applications of these materials in various fields such as energy storage and solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. M. Nafees, M. Ikram, S. Ali, Thermal stability of lead sulfide and lead oxide nano-crystalline materials. Appl. Nanosci. 7, 399–406 (2017)

    Article  ADS  Google Scholar 

  2. P. Canepa, P. Ugliengo, M. Alfredsson, Elastic and vibrational properties of α - and β - PbO. J. Phys. Chem. C 116, 21514–21522 (2012)

    Article  Google Scholar 

  3. S.K. Noukelag, H.E.A. Mohamed, L.C. Razanamahandry, S.K.O. Ntwampe, C.J. Arendse, Bio-inspired synthesis of PbO nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. Mater. Today Proc. 36, 421–426 (2019)

    Article  Google Scholar 

  4. K.T. Arulmozhi, N. Mythili, Studies on the chemical synthesis and characterization of lead oxide nanoparticles with different organic capping agents. AIP Adv. 3, 122122 (2013)

    Article  ADS  Google Scholar 

  5. B.K. Urhan, T. Öznülüer, Ü. Demġr, H.Ö. Doğan, One-pot electrochemical synthesis of lead oxide-electrochemically reduced graphene oxide nanostructures and their electrocatalytic applications. IEEE Sens. Lett. 2, 1–8 (2019)

    Google Scholar 

  6. J. Senvaitiene, J. Smirnova, A. Beganskiene, A. Kareiva, XRD and FTIR characterisation of lead oxide-based pigments and glazes. Acta Chim. Slov. 54, 185–193 (2007)

    Google Scholar 

  7. Y. Song, K. You, Y. Chen, J. Zhao, X. Jiang, Y. Ge, Y. Wang, J. Zheng, Ch. Xing, H. Zhang, Lead monoxide: A promising two-dimensional layered material for applications in nonlinear photonics in the infrared band. Nanoscale 11, 12595–12602 (2019)

    Article  Google Scholar 

  8. P. Kumar, J. Liu, P. Ranjan, Y. Hu, Sh. Yamijala, S.K. Pati, J. Irudayaraj, G.J. Cheng, Alpha lead oxide (α-PbO): a new 2D material with visible light sensitivity. Small 14, 1–10 (2018)

    Article  Google Scholar 

  9. S. Muhammady, F.A. Noor, R. Widita, Y. Darma, Ferromagnetism and structural deformation in monolayer alpha lead oxide induced by N and F doping: new insights from first principles. Int. J. Quantum Chem. 120, 1–11 (2020)

    Article  Google Scholar 

  10. Y. Wang, X. Lin, H. Zhang, T. Wen, F. Huang, G. Li, Y. Wang, F. Liaoa, J. Lin, Selected-control hydrothermal growths of α- And β-PbO crystals and orientated pressure-induced phase transition. CrystEngComm 15, 3513–3516 (2013)

    Article  Google Scholar 

  11. S. Pasha, K. Chidambaram, Synthesis, characterization and electrical properties of nano β-PbO. Int. J. ChemTech Res. 6, 2106–2109 (2014)

    Google Scholar 

  12. A. Güngör, R. Genç, T. Özdemir, Facile synthesis of semiconducting nanosized 0D and 2D lead oxides using a modified co-precipitation method. J. Turk. Chem. Soc. Sect. A Chem. 4, 1017–1030 (2017)

    Article  Google Scholar 

  13. A.T. Khalil, M. Ovais, I. Ullah, M. Ali, S.A. Jan, Z.K. Shinwari, M. Maaza, Bioinspired synthesis of pure massicot phase lead oxide nanoparticles and assessment of their biocompatibility, cytotoxicity and in-vitro biological properties. Arab. J. Chem. 13, 916–931 (2017)

    Article  Google Scholar 

  14. R. Bapitha, M. Alagar, Synthesis and characterization of bio-template assisted lead oxide nanoparticles. J. Adv. Chem. Sci. 3, 499–501 (2017)

    Google Scholar 

  15. A. Aliakbari, E. Najafi, M.M. Amini, S.W. Ng, Structure and photoluminescence properties of lead(II) oxide nanoparticles synthesized from a new lead(II) coordination polymer. Monatshefte fur Chemie 145, 1277–1285 (2014)

    Article  Google Scholar 

  16. R. Tayebee, B. Maleki, M. Sabeti, A new simple method for the preparation of PbO nanoparticles and implementation of an efficient and reusable catalytic system for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones. J. Iran. Chem. Soc. 14, 1179–1188 (2017)

    Article  Google Scholar 

  17. S. Ghasemi, M.F. Mousavi, Sonochemical-assisted synthesis of nano-structured lead dioxide. Ultrason. Sonochem. 15, 448–455 (2008)

    Article  Google Scholar 

  18. P. Gao, Y. Liu, X. Bu, M. Hu, Y. Dai, X. Gao, L. Lei, Solvothermal synthesis of α-PbO from lead dioxide and its electrochemical performance as a positive electrode material. J. Power Sources 242, 299–304 (2013)

    Article  ADS  Google Scholar 

  19. M. Mehdi, F. Mehdi, Graphene oxide doped with PbO nanoparticles, synthesis by microwave assistant thermal decomposition and investigation of optical property. J. Clust. Sci. 28, 2847–2856 (2017)

    Article  Google Scholar 

  20. H. Fu, G. Liu, H. Bao, L. Zhou, H. Zhang, Q. Zhao, Y. Li, W. Cai, Ultrathin hexagonal PbO nanosheets induced by laser ablation in water for chemically trapping surface-enhanced raman spectroscopy chips and detection of trace gaseous H2S. ACS Appl. Mater. Interfaces 12, 23330–23339 (2020)

    Article  Google Scholar 

  21. L. Juan, S. Mao, Z. Shen, Z. Jun, H. Xin, Preparation of PbS-type PbO nanocrystals in a room-temperature ionic liquid. Mater. Lett. 59, 3119–3121 (2005)

    Article  Google Scholar 

  22. M.M. Kashani-Motlagh, M.K. Mahmoudabad, Synthesis and characterization of lead oxide nano-powders by sol-gel method. J. Sol-Gel Sci. Technol. 59, 106–110 (2011)

    Article  Google Scholar 

  23. W.Q. Sensing, A.M. Nelson, S. Habibi, Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles. Chin. Phys. B 30, 026103 (2021)

    Article  Google Scholar 

  24. E.B. Yutomo, F.A. Noor, T. Winata, The effect of vacancies on the magnetic and optical properties of monolayer alpha lead oxide (α-PbO): a density functional theory study. Micro Nanostruct. 163, 107125 (2022)

    Article  Google Scholar 

  25. S. Das, G. Shi, N. Sanders, E. Kioupakis, Electronic and optical properties of two-dimensional α-PbO from first principles. Chem. Mater. 30, 7124–7129 (2018)

    Article  Google Scholar 

  26. Y. Kurniawan, S. Muhammady, R. Widita, Y. Darma, Optical properties and plasmonic states in two-dimensional alpha lead oxide systems: a density-functional study. Mater. Res. Express 6, 055908 (2018)

    Article  ADS  Google Scholar 

  27. A. Masihi, M. Naseri, N. Fatahi, A first-principles study of the electronic and optical properties of monolayer Α-PbO. Chem. Phys. Lett. 721, 27–32 (2019)

    Article  ADS  Google Scholar 

  28. M. Liao, S. Takemoto, Z. Xiao, Y. Toda, T. Tada, Sh. Ueda, T. Kamiya, H. Hosono, Difficulty of carrier generation in orthorhombic PbO. J. Appl. Phys. 119, 165701 (2016)

    Article  ADS  Google Scholar 

  29. P. Giannozzi et al., Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017)

    Article  Google Scholar 

  30. A. Kokalj, XCrySDen-a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999)

    Article  Google Scholar 

  31. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011)

    Article  Google Scholar 

  32. W. Jia, Y. Niu, M. Zhou, R. Liu, L. Zhang, X. Wang, W. Ji, Effects of vacancy defects on the electronic structure and optical properties of GaN:Fe. Superlatt. Microstruct. 133, 106152 (2019)

    Article  Google Scholar 

  33. A. Eddiouane, H. Chaib, A. Nafidi, M. Najjaoui, T. Ait-Taleb, First principles investigation of electronic properties and high refractive index of rutile TiO2 for photovoltaic applications. AIP Conf. Proc. 66, 2056 (2018)

    Google Scholar 

  34. A.J. Kale, R. Chaurasiya, A. Dixit, Inorganic lead-free Cs2AuBiCl6 Perovskite absorber and Cu2O hole transport material based single-junction solar cells with 2218% power conversion efficiency. Adv. Theory Simul. 4, 1–14 (2021)

    Article  Google Scholar 

  35. K. Paulraj, S. Ramaswamy, M. Shkir, I.S. Yahia, M.S. Hamdy, S. AlFaify, Analysis of neodymium rare earth element doping in PbS films for opto - electronics applications. J. Mater. Sci. Mater. Electron. 31, 1817–1827 (2020)

    Article  Google Scholar 

  36. R.J. Hill, Refinement of the structure of orthorhombic PbO (massicot) by Rietveld analysis of neutron powder diffraction data. Acta Crystallogr. 41, 1281–1284 (1985)

    Google Scholar 

  37. S.M. Kabbur, S.D. Waghmare, U.R. Ghodake, S.S. Suryavanshi, Synthesis, morphology and electrical properties of Co2+ substituted NiCuZn ferrites for MLCI applications. AIP Conf. Proc. 1942, 2–6 (2018)

    Google Scholar 

  38. R.T. Grimes, J.A. Leginze, R. Zochowski, J.W. Bennett, Surface transformations of lead oxides and carbonates using first-principles and thermodynamics calculations. Inorg. Chem. 60, 1228–1240 (2021)

    Article  Google Scholar 

  39. T.G. Edossa, M.M. Woldemariam, Electronic, structural, and optical properties of zinc blende and wurtzite cadmium sulfide (CdS) using density functional theory. Adv. Condens. Matter Phys. 1–8, 2020 (2020)

    Google Scholar 

  40. A. Bakhtatou, F. Ersan, Effects of the number of layers on the vibrational, electronic and optical properties of alpha lead oxide. Phys. Chem. Chem. Phys. 21, 3868–3876 (2019)

    Article  Google Scholar 

  41. A.C. Nwanya, P.E. Ugwuoke, B.A. Ezekoye, R.U. Osuji, F.I. Ezema, Structural and optical properties of chemical bath deposited silver oxide thin films: role of deposition time. Adv. in Mater. Sci. and Eng. 2013, 2–8 (2013)

    Article  Google Scholar 

  42. A.L. Holmes, M.R. Islam, R.V. Chelakara, F.J. Ciuba, R.D. Dupuis, M.J. Ries, E.I. Chen, S.A. Maranowski, N. Holonyak, Jr High-reflectivity visible-wavelength semiconductor native oxide Bragg reflectors grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 66, 10–13 (1995)

    Article  Google Scholar 

  43. M. Ghazanfar, S. Azam, M. Farooq, R. Khan, Effect of manganese on electronic and optical properties of Ba2ZnS3: a DFT study. J. Solid State Chem. 301, 122335 (2021)

    Article  Google Scholar 

  44. M.S. El-Bana, S.S. Fouad, Opto-electrical characterization of As33Se67-xSnx thin films. J. Alloys Compd. 695, 1532–1538 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fekadu Gashaw Hone.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geldasa, F.T., Kebede, M.A., Shura, M.W. et al. Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study. Eur. Phys. J. Plus 138, 165 (2023). https://doi.org/10.1140/epjp/s13360-023-03718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03718-7

Navigation