Skip to main content
Log in

Determining neutrino mass ordering with ICAL, JUNO and T2HK

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2023

This article has been updated

Abstract

In this paper, we study the synergy among the future accelerator (T2HK), future atmospheric (ICAL) and future reactor (JUNO) neutrino experiments to determine the neutrino mass ordering. T2HK can measure the mass ordering only for favorable values of \(\delta _{\textrm{CP}}\), whereas the mass ordering sensitivity of JUNO is dependent on the energy resolution. Our results show that with a combination of T2HK, ICAL and JUNO one can have a mass ordering sensitivity of 7.2 \(\sigma \) even for the unfavorable value of \(\delta _{\textrm{CP}} = 0^\circ \) for T2HK and most conservative value of JUNO energy resolution of 5\(\%/\sqrt{E(\text {MeV})}\). The synergy mainly comes because different oscillation channels prefer different values of \(|\Delta m_{31}^2|\) in the fit when the mass-ordering \(\chi ^2\) is minimized. In this context, we also study: (i) effect of varying energy resolution of JUNO, (ii) the effect of longer run-time of ICAL, (iii) effect of different true values of \(\theta _{23}\) and (iv) effect of octant degeneracy in the determination of neutrino mass ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

Change history

Notes

  1. For the detector of course there will be running costs such as maintaining the magnetic field, electronics and power supply for cooling.

References

  1. M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Universe 7(12), 459 (2021). https://doi.org/10.3390/universe7120459

    Article  ADS  Google Scholar 

  2. K. Abe et al., Phys. Rev. D 97(7), 072001 (2018). https://doi.org/10.1103/PhysRevD.97.072001

    Article  ADS  Google Scholar 

  3. K. Abe et al., Phys. Rev. D 103(11), 112008 (2021). https://doi.org/10.1103/PhysRevD.103.112008

    Article  ADS  Google Scholar 

  4. NOvA Collaboration, M. A. Acero et al., Phys. Rev. D 106, 032004 (2022)

  5. I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, A. Zhou, JHEP 09, 178 (2020). https://doi.org/10.1007/JHEP09(2020)178

    Article  ADS  Google Scholar 

  6. C. Bronner. Recent results and future prospects from T2K,Talk at the Neutrino 2022, 1st June 2022

  7. J. Hartnell, New results from the NO\(\nu \)A Experiment, Talk at the Neutrino 2022, 1st June 2022

  8. K. Abe et al., PTEP 6, 063C01 (2018). https://doi.org/10.1093/ptep/pty044

    Article  Google Scholar 

  9. DUNE Collaboration, B. Abi et al., (2020). https://doi.org/10.48550/arXiv.2002.03005

  10. S. Ahmed et al., Pramana 88(5), 79 (2017). https://doi.org/10.1007/s12043-017-1373-4

    Article  ADS  Google Scholar 

  11. S. Adrian-Martinez et al., J. Phys. G 43(8), 084001 (2016). https://doi.org/10.1088/0954-3899/43/8/084001

    Article  ADS  Google Scholar 

  12. M.G. Aartsen et al., J. Phys. G 44(5), 054006 (2017). https://doi.org/10.1088/1361-6471/44/5/054006

    Article  ADS  Google Scholar 

  13. F. An et al., J. Phys. G 43(3), 030401 (2016). https://doi.org/10.1088/0954-3899/43/3/030401

    Article  ADS  Google Scholar 

  14. M.G. Aartsen et al., Phys. Rev. D 101(3), 032006 (2020). https://doi.org/10.1103/PhysRevD.101.032006

    Article  ADS  Google Scholar 

  15. C.T. Nhan, Neutrino mass ordering determination through a combined JUNO and KM3NeT/ORCA analysis, Talk at the XIX International Workshop on Neutrino Telescopes, 18–26 Feb 2021

  16. M. Blennow, T. Schwetz, JHEP 09, 089 (2013). https://doi.org/10.1007/JHEP09(2013)089

    Article  ADS  Google Scholar 

  17. Y. Wang, Daya Bay II: current status and future plan. Talk at Daya Bay II meeting. IHEP Jan 11 (2013)

  18. S. Fukasawa, M. Ghosh, O. Yasuda, Nucl. Phys. B 918, 337 (2017). https://doi.org/10.1016/j.nuclphysb.2017.02.008

    Article  ADS  Google Scholar 

  19. K. Chakraborty, S. Goswami, C. Gupta, T. Thakore, JHEP 05, 137 (2019). https://doi.org/10.1007/JHEP05(2019)137

    Article  ADS  Google Scholar 

  20. ESSnuSB Collaboration, A. Alekou et al., Eur. Phys. J. C 81, 1130 (2021)

  21. S. Cao, A. Nath, T.V. Ngoc, P.T. Quyen, N.T. Van Hong, N.K. Francis, Phys. Rev. D 103(11), 112010 (2021). https://doi.org/10.1103/PhysRevD.103.112010

    Article  ADS  Google Scholar 

  22. V. Barger, A. Bhattacharya, A. Chatterjee, R. Gandhi, D. Marfatia, M. Masud, Phys. Rev. D 89(1), 011302 (2014). https://doi.org/10.1103/PhysRevD.89.011302

    Article  ADS  Google Scholar 

  23. V. Barger, A. Bhattacharya, A. Chatterjee, R. Gandhi, D. Marfatia, M. Masud, Int. J. Mod. Phys. A 31(07), 1650020 (2016). https://doi.org/10.1142/S0217751X16500202

    Article  ADS  Google Scholar 

  24. M. Blennow, E. Fernandez-Martinez, T. Ota, S. Rosauro-Alcaraz, Eur. Phys. J. C 80(3), 190 (2020). https://doi.org/10.1140/epjc/s10052-020-7761-9

    Article  ADS  Google Scholar 

  25. S. Choubey, M. Ghosh, D. Raikwal, (2022). https://doi.org/10.48550/arXiv.2207.04784

  26. M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara, S. Midorikawa, Phys. Rev. D 92(2), 023004 (2015). https://doi.org/10.1103/PhysRevD.92.023004

    Article  ADS  Google Scholar 

  27. C. Andreopoulos et al., Nucl. Instrum. Methods A 614, 87 (2010). https://doi.org/10.1016/j.nima.2009.12.009

    Article  ADS  Google Scholar 

  28. A. Chatterjee, K.K. Meghna, K. Rawat, T. Thakore, V. Bhatnagar, R. Gandhi, D. Indumathi, N.K. Mondal, N. Sinha, JINST 9, P07001 (2014). https://doi.org/10.1088/1748-0221/9/07/P07001

    Article  ADS  Google Scholar 

  29. M.M. Devi, A. Ghosh, D. Kaur, L.S. Mohan, S. Choubey, A. Dighe, D. Indumathi, S. Kumar, M.V.N. Murthy, M. Naimuddin, JINST 8, P11003 (2013). https://doi.org/10.1088/1748-0221/8/11/P11003

    Article  ADS  Google Scholar 

  30. M.M. Devi, T. Thakore, S.K. Agarwalla, A. Dighe, JHEP 10, 189 (2014). https://doi.org/10.1007/JHEP10(2014)189

    Article  ADS  Google Scholar 

  31. L.S. Mohan, D. Indumathi, Eur. Phys. J. C 77(1), 54 (2017). https://doi.org/10.1140/epjc/s10052-017-4608-0

    Article  ADS  Google Scholar 

  32. A. Ghosh, T. Thakore, S. Choubey, JHEP 04, 009 (2013). https://doi.org/10.1007/JHEP04(2013)009

    Article  ADS  Google Scholar 

  33. P. Huber, M. Lindner, W. Winter, Comput. Phys. Commun. 167, 195 (2005). https://doi.org/10.1016/j.cpc.2005.01.003

    Article  ADS  Google Scholar 

  34. P. Huber, J. Kopp, M. Lindner, M. Rolinec, W. Winter, Comput. Phys. Commun. 177, 432 (2007). https://doi.org/10.1016/j.cpc.2007.05.004

    Article  ADS  Google Scholar 

  35. S. Choubey, P. Roy, Phys. Rev. D 73, 013006 (2006). https://doi.org/10.1103/PhysRevD.73.013006

    Article  ADS  Google Scholar 

  36. R. Gandhi, P. Ghoshal, S. Goswami, P. Mehta, S.U. Sankar, S. Shalgar, Phys. Rev. D 76, 073012 (2007). https://doi.org/10.1103/PhysRevD.76.073012

    Article  ADS  Google Scholar 

  37. V. Barger, D. Marfatia, K. Whisnant, Phys. Rev. D 65, 073023 (2002). https://doi.org/10.1103/PhysRevD.65.073023

    Article  ADS  Google Scholar 

  38. S. Prakash, S.K. Raut, S.U. Sankar, Phys. Rev. D 86, 033012 (2012). https://doi.org/10.1103/PhysRevD.86.033012

    Article  ADS  Google Scholar 

  39. M. Ghosh, P. Ghoshal, S. Goswami, N. Nath, S.K. Raut, Phys. Rev. D 93(1), 013013 (2016). https://doi.org/10.1103/PhysRevD.93.013013

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is performed by the members of the INO-ICAL collaboration. We thank to the members of the INO-ICAL collaboration for their valuable comments and constructive inputs. We thank A. Dighe, S. Goswami for useful discussion and valuable comments during the INO analysis meetings. The authors also sincerely thank the ICAL internal referees, Amol Dighe and D. Indumathi for their careful reading of the manuscript and for providing useful suggestions. Authors extend sincere thanks to Suprabh Prakash for providing the .glb file for JUNO and for useful discussions regarding the JUNO experiment. The HRI cluster computing facility (http://cluster.hri.res.in) is gratefully acknowledged. MG acknowledges Ramanujan Fellowship of SERB, Govt. of India, through grant no: RJF/2020/000082. This project has received funding/support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement No 860881-HIDDeN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Raikwal.

Additional information

The original online version of this article was revised to correct second author name to Sandhya Choubey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raikwal, D., Choubey, S. & Ghosh, M. Determining neutrino mass ordering with ICAL, JUNO and T2HK. Eur. Phys. J. Plus 138, 110 (2023). https://doi.org/10.1140/epjp/s13360-023-03697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03697-9

Navigation