Skip to main content
Log in

Territories of Parrondo’s paradox and its entanglement dynamics in quantum walks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Parrondo’s paradox is a well-known counterintuitive phenomenon, where the combination of unfavorable situations can establish favorable ones. In this paper, we study one-dimensional discrete-time quantum walks, manipulating two different coins (two-state) operators representing two losing games A and B, respectively, to create the Parrondo effect in the quantum domain. We exhibit that games A and B are losing games when played individually but could produce a winning expectation when played alternatively for a particular sequence of different periods for distinct choices of the relative phase. Furthermore, we investigate the regimes of the relative phase of initial state of coins where Parrondo games exist. Moreover, we also analyze the relationships between Parrondo’s game and quantum entanglement and show regimes where Parrondo sequence may generate maximal entangler state in our scheme. Along with the applications of different kinds of quantum walks, our outcomes potentially encourage the development of new quantum algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: There are no observational data related to this article. The necessary calculations and graphic discussion can be made available on request].

References

  1. J.M.R. Parrondo, How to cheat a bad mathematician (1996), in EEC HC &M Network on Complexity and Chaos (#ERBCHRX-CT940546), Unpublished (1996)

  2. J.M.R. Parrondo, G.P. Harmer, D. Abbott, Phys. Rev. Lett. 85, 5226 (2000)

    Article  ADS  Google Scholar 

  3. G.P. Harmer, D. Abbott, Nature 402, 864 (1999)

    Article  ADS  Google Scholar 

  4. G.P. Harmer, D. Abbott, Stat. Sci. 14, 206 (1999)

    Google Scholar 

  5. S. Jian-Jun, W. Qi-Wen, Sci. Rep. 4, 4244 (2014)

    Article  Google Scholar 

  6. J.M.R. Parrondo, L. Dinís, Contemp. Phys. 45, 147 (2004)

    Article  ADS  Google Scholar 

  7. A. Rosato, K.J. Strandburg, F. Prinz, R.H. Swendsen, Phys. Rev. Lett. 58, 1038 (1987)

    Article  ADS  Google Scholar 

  8. H.V. Westerhoff, T.Y. Tsong, P.B. Chock, Y.-D. Chen, R. Astumian, Proc. Natl. Acad. Sci. 83, 4734 (1986)

    Article  ADS  Google Scholar 

  9. E. Key, Probab. Theory Relat. Fields 75, 97 (1987)

    Article  Google Scholar 

  10. S. Maslov, Y.-C. Zhang, Int. J. Theor. Appl. Finance 1, 377 (1998)

    Article  Google Scholar 

  11. A.P. Flitney, J. Ng, D. Abbott, Physica A 314, 35 (2002)

    Article  ADS  Google Scholar 

  12. C.F. Lee, N.F. Johnson, F. Rodriguez, L. Quiroga, Fluct. Noise Lett. 2, 293 (2002)

    Article  Google Scholar 

  13. J. Buceta, K. Lindenberg, J.M.R. Parrondo, Phys. Rev. Lett. 88, 024103 (2001)

    Article  ADS  Google Scholar 

  14. S. Khan, M. Ramzan, M.K. Khan, Int. J. Theor. Phys. 49, 31 (2010)

    Article  Google Scholar 

  15. S. Ethier, J. Lee, arXiv:1203.0818 [math.PR] (2012)

  16. Ł Pawela, J. Sładkowski, Phys. D 256, 51 (2013)

    Article  Google Scholar 

  17. M. Pejic, arXiv:1503.08868 [math-ph] (2015)

  18. F.A. Grünbaum, M. Pejic, Lett. Math. Phys. 106, 251 (2016)

    Article  ADS  Google Scholar 

  19. N. Masuda, N. Konno, Eur. Phys. J. B 40, 313 (2004)

    Article  ADS  Google Scholar 

  20. D.M. Wolf, V.V. Vazirani, A.P. Arkin, J. Theor. Biol. 234, 227 (2005)

    Article  ADS  Google Scholar 

  21. F.A. Reed, Genetics 176, 1923 (2007)

    Article  Google Scholar 

  22. R. Spurgin, M. Tamarkin, J. Behav. Finance 6, 15 (2005)

    Article  Google Scholar 

  23. P. Amengual, A. Allison, R. Toral, D. Abbott, Proc. Royal Soc. Lond. A 460, 2269 (2004)

    Article  ADS  Google Scholar 

  24. F. Cannata, M. Ioffe, G. Junker, D. Nishnianidze, J. Phys. A Math. Gen. 32, 3583 (1999)

    Article  ADS  Google Scholar 

  25. Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993)

    Article  ADS  Google Scholar 

  26. S.E. Venegas-Andraca, Quantum Inf. Process 11, 1015 (2012)

    Article  Google Scholar 

  27. T.D. Mackay, S.D. Bartlett, L.T. Stephenson, B.C. Sanders, J. Phys. A Math. Gen. 35, 2745 (2002)

    Article  ADS  Google Scholar 

  28. M. Santha, in: M. Agrawal, D. Du, Z. Duan, and A. Li (eds.) Theory and Applications of Models of Computation, (Springer Berlin Heidelberg, 2008) p. 31

  29. R. Portugal, Quantum Walks and Search Algorithms, Quantum Science and Technology (Springer-Verlag, New York, 2013)

    Book  MATH  Google Scholar 

  30. A.M. Childs, Y. Ge, Phys. Rev. A 89, 052337 (2014)

    Article  ADS  Google Scholar 

  31. A.M. Childs, Phys. Rev. Lett. 102, 180501 (2009)

    Article  ADS  Google Scholar 

  32. A.M. Childs, D. Gosset, Z. Webb, Science 339, 791 (2013)

    Article  ADS  Google Scholar 

  33. T. Kitagawa, M.S. Rudner, E. Berg, E. Demler, Phys. Rev. A 82, 033429 (2010)

    Article  ADS  Google Scholar 

  34. T. Kitagawa, Quantum Inf. Process 11, 1107 (2012)

    Article  Google Scholar 

  35. T. Kitagawa, M.A. Broome, A. Fedrizzi, M.S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, A.G. White, Nat. Commun. 3, 882 (2012)

    Article  ADS  Google Scholar 

  36. J. Eisert, M. Friesdorf, C. Gogolin, Nat. Phys. 11, 124 (2015)

    Article  Google Scholar 

  37. J. Lang, B. Frank, J.C. Halimeh, Phys. Rev. Lett. 121, 130603 (2018)

    Article  ADS  Google Scholar 

  38. M. Heyl, Rep. Prog. Phys. 81, 054001 (2018)

    Article  ADS  Google Scholar 

  39. X.-Y. Xu, Q.-Q. Wang, M. Heyl, J. C. Budich, W.-W. Pan, Z. Chen, M. Jan, K. Sun, J.-S. Xu, Y.-J. Han, et al., arXiv:1808.03930 [quant-ph] (2018a)

  40. J.M.R. Parrondo, J.M. Horowitz, T. Sagawa, Nat. Phys. 11, 131 (2015)

    Article  Google Scholar 

  41. S. Garnerone, Phys. Rev. A 86, 032342 (2012)

    Article  ADS  Google Scholar 

  42. A. Romanelli, Phys. Rev. A 85, 012319 (2012)

    Article  ADS  Google Scholar 

  43. A. Romanelli, R. Donangelo, R. Portugal, F.D.L. Marquezino, Phys. Rev. A 90, 022329 (2014)

    Article  ADS  Google Scholar 

  44. A. Romanelli, Phys. A 434, 111 (2015)

    Article  Google Scholar 

  45. S. Dadras, A. Gresch, C. Groiseau, S. Wimberger, G.S. Summy, Phys. Rev. Lett. 121, 070402 (2018)

    Article  ADS  Google Scholar 

  46. A.P. Flitney, D. Abbott, N.F. Johnson, J. Phys. A Math. Gen. 37, 7581 (2004)

    Article  ADS  Google Scholar 

  47. C. Chandrashekar, S. Banerjee, Phys. Lett. A 375, 1553 (2011)

    Article  ADS  Google Scholar 

  48. A. P. Flitney, arXiv:1209.2252 [quant-ph] (2012)

  49. M. Li, Y.-S. Zhang, G.-C. Guo, Fluct. Noise Lett. 12, 1350024 (2013)

    Article  Google Scholar 

  50. J. Rajendran, C. Benjamin, EPL 122, 40004 (2018)

    Article  ADS  Google Scholar 

  51. J. Rajendran, C. Benjamin, Royal Soc. Open Sci. 5, 171599 (2018)

    Article  ADS  Google Scholar 

  52. M.A. Pires, S.M.D. Queirós, Phys. Rev. E 102, 042124 (2020)

    Article  ADS  Google Scholar 

  53. Z. Walczak, J.H. Bauer, Phys. Rev. E 104, 064209 (2021)

    Article  ADS  Google Scholar 

  54. G. Trautmann, C. Groiseau, S. Wimberger, Fluct. Noise Lett. 21, 2250053 (2022). https://doi.org/10.1142/S0219477522500535

    Article  ADS  Google Scholar 

  55. A. Schreiber, K.N. Cassemiro, V. Potoček, A. Gábris, I. Jex, C. Silberhorn, Phys. Rev. Lett. 106, 180403 (2011)

    Article  ADS  Google Scholar 

  56. N.P. Kumar, R. Balu, R. Laflamme, C.M. Chandrashekar, Phys. Rev. A 97, 012116 (2018)

    Article  ADS  Google Scholar 

  57. R. Vieira, E.P.M. Amorim, G. Rigolin, Phys. Rev. Lett. 111, 180503 (2013)

    Article  ADS  Google Scholar 

  58. R. Vieira, E.P.M. Amorim, G. Rigolin, Phys. Rev. A 89, 042307 (2014)

    Article  ADS  Google Scholar 

  59. Q.-Q. Wang, X.-Y. Xu, W.-W. Pan, K. Sun, J.-S. Xu, G. Chen, Y.-J. Han, C.-F. Li, G.-C. Guo, Optica 5, 1136 (2018)

    Article  ADS  Google Scholar 

  60. M. Jan, Q.-Q. Wang, X.-Y. Xu, W.-W. Pan, Z. Chen, Y.-J. Han, C.-F. Li, G.-C. Guo, D. Abbott, Adv. Quantum Technol. 3, 1900127 (2020)

    Article  Google Scholar 

  61. X.-Y. Xu, Q.-Q. Wang, W.-W. Pan, K. Sun, J.-S. Xu, G. Chen, J.-S. Tang, M. Gong, Y.-J. Han, C.-F. Li, G.-C. Guo, Phys. Rev. Lett. 120, 260501 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M. Jan and N.A.K. acknowledge the postdoctoral fellowship supported by Zhejiang Normal University under Grants No. ZC304022918 and No. ZC304022980, respectively. G.X. acknowledges support from the NSFC under Grants No. 11835011 and No. 12174346.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Munsif Jan, Niaz Ali Khan or Gao Xianlong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, M., Khan, N.A. & Xianlong, G. Territories of Parrondo’s paradox and its entanglement dynamics in quantum walks. Eur. Phys. J. Plus 138, 65 (2023). https://doi.org/10.1140/epjp/s13360-023-03685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03685-z

Navigation