Skip to main content
Log in

Eavesdropping a quantum key distribution network using sequential quantum unsharp measurement attacks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the possibility of eavesdropping on a quantum key distribution network by local sequential quantum unsharp measurement attacks by the eavesdropper. In particular, we consider a pure two-qubit state shared between two parties Alice and Bob, sharing quantum steerable correlations that form the one-sided device-independent quantum key distribution network. One qubit of the shared state is with Alice and the other one while going to Bob’s place is intercepted by multiple sequential eavesdroppers who perform quantum unsharp measurement attacks thus gaining some positive key rate while preserving the quantum steerable correlations for Bob. In this way, Bob will also have a positive secret key rate although reduced. However, this reduction is not that sharp and can be perceived due to the decoherence and imperfection of the measurement devices. We found that there is a possibility of sequential eavesdropping even after setting a minimum threshold on the observed secure key rate by Alice and Bob. In the end, we show that an unbounded number of eavesdroppers can also get secret information in some specific scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002). https://doi.org/10.1103/RevModPhys.74.145

    Article  ADS  MATH  Google Scholar 

  2. C.H. Bennett, G. Brassard, Quantum Cryptography, Public Key Distribution and Coin Tossing, (IEEE Press, New York, 1984). https://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf

  3. C.H. Bennett, Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  ADS  MATH  Google Scholar 

  4. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MATH  Google Scholar 

  5. V. Scarani, H.B. Pasquinucci, N.J. Cerf, M. Dusek, N. Lütkenhaus, M. Peev, The security of practical quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009). https://doi.org/10.1103/RevModPhys.81.1301

    Article  ADS  Google Scholar 

  6. A. Aćin, N. Gisin, L. Masanes, From Bell’s Theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006). https://doi.org/10.1103/PhysRevLett.97.120405

    Article  ADS  MATH  Google Scholar 

  7. S. Gupta, D. Saha, Z.P. Xu, A. Cabello, A.S. Majumdar, Quantum contextuality provides communication complexity advantage, (2022), Preprint at arXiv:2205.03308. https://arxiv.org/abs/2205.03308

  8. D. Mayers, Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78, 3414 (1997). https://doi.org/10.1103/PhysRevLett.78.3414

    Article  ADS  Google Scholar 

  9. D. Mayers, Unconditional security in quantum cryptography. J. ACM 48, 351 (2001). https://doi.org/10.1145/382780.382781

    Article  MATH  Google Scholar 

  10. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, A. Sanpera, Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818 (1996). https://doi.org/10.1103/PhysRevLett.77.2818

    Article  ADS  Google Scholar 

  11. H.K. Lo, H.F. Chau, Is quantum bit commitment really possible? Phys. Rev. Lett. 78, 3410 (1997). https://doi.org/10.1103/PhysRevLett.78.3410

    Article  ADS  Google Scholar 

  12. P.W. Shor, J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000). https://doi.org/10.1103/PhysRevLett.85.441

    Article  ADS  Google Scholar 

  13. G. Brassard, N. Lütkenhaus, T. Mor, B.C. Sanders, Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000). https://doi.org/10.1103/PhysRevLett.85.1330

    Article  ADS  MATH  Google Scholar 

  14. N. Lütkenhaus, Security against individual attacks for realistic quantum key distribution. Phys. Rev. A. 61, 052304 (2000). https://doi.org/10.1103/PhysRevA.61.052304

    Article  ADS  Google Scholar 

  15. S. Bera, S. Gupta, A.S. Majumdar, Device-independent quantum key distribution using random quantum states (2022), Preprint at arXiv:2205.07464

  16. C. Branciard, E.G. Cavalcanti, S.P. Walborn, V. Scarani, H.M. Wiseman, One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering. Phys. Rev. A. 85, 010301(R) (2012). https://doi.org/10.1103/PhysRevA.85.010301

    Article  ADS  Google Scholar 

  17. R. Uola, A.C.S. Costa, H.C. Nguyen, O. Guhne, Quantum steering. Rev. Mod. Phys. 92, 015001 (2020). https://doi.org/10.1103/RevModPhys.92.015001

    Article  ADS  Google Scholar 

  18. E. Schrödinger, Discussion of probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 553 (1935). https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/discussion-of-probability-relations-between-separated-systems/C1C71E1AA5BA56EBE6588AAACB9A222D

  19. E. Schrödinger, Probability relations between separatedsystems. Proc. Cambridge Philos. Soc. 32, 446 (1936). https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/probability-relations-between-separated-systems/641DDDED6FB033A1B190B458E0D02F22

  20. H.M. Wiseman, S.J. Jones, A.C. Doherty, Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen Paradox. Phys. Rev. Lett. 98, 140402 (2007). https://doi.org/10.1103/PhysRevLett.98.140402

    Article  ADS  MATH  Google Scholar 

  21. S.J. Jones, H.M. Wiseman, A.C. Doherty, Entanglement, Einstein–Podolsky–Rosen correlations, Bell nonlocality, and steering. Phys. Rev. A 76, 052116 (2007). https://doi.org/10.1103/PhysRevA.76.052116

    Article  ADS  MATH  Google Scholar 

  22. E.G. Cavalcanti, S.J. Jones, H.M. Wiseman, M.D. Reid, Experimental criteria for steering and the Einstein–Podolsky–Rosen paradox. Phys. Rev. A 80, 032112 (2009). https://doi.org/10.1103/PhysRevA.80.032112

    Article  ADS  Google Scholar 

  23. J. Schneeloch, C.J. Broadbent, S.P. Walborn, E.G. Cavalcanti, J.C. Howell, Einstein–Podolsky–Rosen steering inequalities from entropic uncertainty relations. Phys. Rev. A 87, 062103 (2013). https://doi.org/10.1103/PhysRevA.87.062103

    Article  ADS  Google Scholar 

  24. S. Gupta, D. Das, A.S. Majumdar, Distillation of genuine tripartite Einstein–Podolsky–Rosen steering. Phys. Rev. A 104, 022409 (2021). https://doi.org/10.1103/PhysRevA.104.022409

    Article  ADS  Google Scholar 

  25. S. Gupta, D. Das, C. Jebarathinam, A. Roy, S. Datta, A.S. Majumdar, “All-versus-nothing’’ proof of genuine tripartite steering and entanglement certification in the two-sided device-independent scenario. Quantum Stud. Math. Found. 9, 175–198 (2022). https://doi.org/10.1007/s40509-021-00261-x

    Article  Google Scholar 

  26. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). https://doi.org/10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  27. T. Pramanik, M. Kaplan, A.S. Majumdar, Fine-grained Einstein–Podolsky–Rosen steering inequalities. Phys. Rev. A 90, 050305(R) (2014). https://doi.org/10.1103/PhysRevA.90.050305

    Article  ADS  Google Scholar 

  28. S. Sasmal, D. Das, S. Mal, A.S. Majumdar, Steering a single system sequentially by multiple observers. Phys. Rev. A 98, 012305 (2018). https://doi.org/10.1103/PhysRevA.98.012305

    Article  ADS  Google Scholar 

  29. S. Gupta, A.G. Maity, D. Das, A. Roy, A.S. Majumdar, Genuine Einstein–Podolsky–Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 103, 022421 (2021). https://doi.org/10.1103/PhysRevA.103.022421

    Article  ADS  Google Scholar 

  30. F.J. Curchod, M. Johansson, R. Augusiak, M.J. Hoban, P. Wittek, A. Acín, Unbounded randomness certification using sequences of measurements. Phys. Rev. A 95, 020102(R) (2017). https://doi.org/10.1103/PhysRevA.95.020102

    Article  ADS  Google Scholar 

  31. S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, V. Scarani, Device-independent quantum key distribution secure against collective attacks. New J. Phys. 11, 045021 (2009). https://doi.org/10.1088/1367-2630/11/4/045021/pdf

    Article  ADS  Google Scholar 

  32. R. Silva, N. Gisin, Y. Guryanova, S. Popescu, Multiple observers can share the nonlocality of half of an entangled pair by using optimal weak measurements. Phys. Rev. Lett. 114, 250401 (2015). https://doi.org/10.1103/PhysRevLett.114.250401

    Article  ADS  Google Scholar 

  33. S. Mal, A.S. Majumdar, D. Home, Sharing of nonlocality of a single member of an entangled pair of qubits is not possible by more than two unbiased observers on the other wing. Mathematics 4, 48 (2016). http://www.mdpi.com/2227-7390/4/3/48/htm

  34. P. Busch, Unsharp reality and joint measurements for spin observables. Phys. Rev. D 33, 2253 (1986). https://doi.org/10.1103/PhysRevD.33.2253

    Article  ADS  Google Scholar 

  35. P. Busch, M. Grabowski, P.J. Lahti, Operational Quantum Physics (Springer-Verlag, Berlin, 1997)

    MATH  Google Scholar 

  36. M. Banik, Md.R. Gazi, S. Ghosh, G. Kar, Degree of complementarity determines the nonlocality in quantum mechanics. Phys. Rev. A 87, 052125 (2013). https://doi.org/10.1103/PhysRevA.87.052125

    Article  ADS  Google Scholar 

  37. P. Busch, T. Heinosaari, J. Schultz, N. Stevens, Comparing the degrees of incompatibility inherent in probabilistic physical theories. Europhys. Lett. 103, 10002 (2013). https://doi.org/10.1209/0295-5075/103/10002

    Article  ADS  Google Scholar 

  38. S.K. Choudhary, T. Konrad, H. Uys, Implementation schemes for unsharp measurements with trappedions. Phys. Rev. A 87, 012131 (2013). https://doi.org/10.1103/PhysRevA.87.012131

    Article  ADS  Google Scholar 

  39. M.-J. Hu, Z.-Y. Zhou, X.-M. Hu, C.-F. Li, G.-C. Guo, and Y.-S. Zhang, Observation of non-locality sharing among three observers with one entangled pair via optimal weak measurement. NPJ Quantum Inf. 4, 63 (2018). https://www.nature.com/articles/s41534-018-0115-x

  40. M. Schiavon, L. Calderaro, M. Pittaluga, G. Vallone, P. Villoresi, Three-observer Bell inequality violation on a two-qubit entangled state. Quantum Sci. Technol. 2, 015010 (2017). https://doi.org/10.1088/2058-9565/aa62be/meta

    Article  ADS  Google Scholar 

  41. Y.-H. Choi, S. Hong, T. Pramanik, H.-T. Lim, Y.-S. Kim, H. Jung, S.-W. Han, S. Moon, and Y.-W. Cho, Demonstration of simultaneous quantum steering by multiple observers via sequential weak measurements. Optica 7, 675 (2020). https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-7-6-675 &id=432421

  42. G. Foletto, L. Calderaro, G. Vallone, P. Villoresi, Experimental demonstration of sequential quantum random access codes. Phys. Rev. Res. 2, 033205 (2020). https://doi.org/10.1103/PhysRevResearch.2.033205

    Article  Google Scholar 

  43. H. Anwer, S. Muhammad, W. Cherifi, N. Miklin, A. Tavakoli, M. Bourennane, Experimental characterization of unsharp qubit observables and sequential measurement incompatibility via quantum random access codes. Phys. Rev. Lett. 125, 080403 (2020). https://doi.org/10.1103/PhysRevLett.125.080403

    Article  ADS  Google Scholar 

  44. E.G. Cavalcanti, C.J. Foster, M. Fuwa, and H.M. Wiseman, Analog of the Clauser–Horne–Shimony-Holt inequality for steering. J. Opt. Soc. Am. B 32, A74 (2015). https://www.osapublishing.org/josab/abstract.cfm?uri=josab-32-4-A74

  45. M. Hillery, V. Buzek, A. Berthiaume, Quantum secret sharing. Phys. Rev. Lett. 68, 3121 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  MATH  Google Scholar 

Download references

Acknowledgements

SG acknowledges S. N. Bose National Centre for Basic Sciences, Kolkata, for the financial support. Authors acknowledge QWorld for organizing QIntern 2021. SG thanks Shiladitya Mal for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wath, Y., Hariprasad, M., Shah, F. et al. Eavesdropping a quantum key distribution network using sequential quantum unsharp measurement attacks. Eur. Phys. J. Plus 138, 54 (2023). https://doi.org/10.1140/epjp/s13360-023-03664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03664-4

Navigation