Skip to main content
Log in

Electromagnetic effects on the complexity of static cylindrical object in f(GT) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we investigate complexity of anisotropic cylindrical object under the influence of electromagnetic field in f(GT) theory, where G and T indicate the Gauss–Bonnet term and trace of the stress–energy tensor, respectively. For this purpose, we calculate the modified field equations, non-conservation equation and mass distributions that assist in comprehending the structure of astrophysical objects. The Riemann tensor is divided into different structure scalars, among which one is called the complexity factor. This factor is used to measure complexity of the system due to the involvement of inhomogeneous energy density, anisotropic pressure and charge. The vanishing of the complexity factor is employed as a constraint to formulate charged static solutions for the Gokhroo–Mehra model and polytropic equation of state. We conclude that the presence of charge reduces the complexity of the anisotropic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

References

  1. L. Bergström, Rep. Prog. Phys. 63, 793 (2000)

    Article  ADS  Google Scholar 

  2. D. Pietrobon, A. Balbi, D. Marinucci, Phys. Rev. D 74, 043524 (2006)

    Article  ADS  Google Scholar 

  3. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. K. Bamba et al., Phys. Lett. B 732, 349 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. G. Abbas et al., Astrophys. Space Sci. 357, 158 (2015)

    Article  ADS  Google Scholar 

  6. M. Sharif, A. Ikram, Int. J. Mod. Phys. D 26, 1750030 (2017)

    Article  ADS  Google Scholar 

  7. M.F. Shamir, A. Saeed, J. Exp. Theor. Phys. 125, 1065 (2017)

    Article  ADS  Google Scholar 

  8. M. Sharif, A. Ramzan, Phys. Dark Univer. 30, 100737 (2020)

    Article  Google Scholar 

  9. M. Sharif, A. Ikram, Eur. Phys. J. C 76, 640 (2016)

    Article  ADS  Google Scholar 

  10. M. Sharif, A. Ikram, Eur. Phys. J. Plus 132, 1 (2017)

    Article  Google Scholar 

  11. H. Hossienkhani, V. Fayaz, A. Jafari, Can. J. Phys. 96, 225 (2018)

    Article  ADS  Google Scholar 

  12. M. Sharif, A. Naeem, Int. J. Mod. Phys. A 35, 2050121 (2020)

    Article  ADS  Google Scholar 

  13. M.F. Shamir, Phys. Dark Univer. 32, 100794 (2021)

    Article  Google Scholar 

  14. H. Bondi, Proc. Math. Phys. Eng. Sci. 427, 259 (1990)

    Google Scholar 

  15. B.V. Ivanov, Proc. Class. Quantum Grav. 19, 5131 (2002)

    Article  ADS  Google Scholar 

  16. M. Esculpi, E. Aloma, Eur. Phys. J. C 67, 521 (2010)

    Article  ADS  Google Scholar 

  17. M. Sharif, S. Naz, Mod. Phys. Lett. A 35, 1950340 (2020)

    Article  ADS  Google Scholar 

  18. M. Sharif, K. Hassan, Eur. Phys. J. Plus 137, 997 (2022)

    Article  Google Scholar 

  19. M. Sharif, K. Hassan, Int. J. Geom. Methods Mod. Phys. 19, 2250150 (2022)

    Article  Google Scholar 

  20. R. López-Ruiz, H.L. Mancini, X. Calbet, Phys. Lett. A 209, 321 (1995)

    Article  ADS  Google Scholar 

  21. X. Calbet, R. López-Ruiz, Phys. Rev. E 63, 066116 (2001)

    Article  ADS  Google Scholar 

  22. R.G. Catalán, J. Garay, R. López-Ruiz, Phys. Rev. E 66, 011102 (2002)

    Article  ADS  Google Scholar 

  23. J. Sañudo, R. López-Ruiz, Phys. Lett. A 372, 5283 (2008)

    Article  ADS  Google Scholar 

  24. J. Sañudo, A.F. Pacheco, Phys. Lett. A 373, 807 (2009)

    Article  ADS  Google Scholar 

  25. M.G.B. De Avellar et al., Phys. Lett. A 378, 3481 (2014)

    Article  ADS  Google Scholar 

  26. L. Herrera, Phys. Rev. D 97, 044010 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Sharif, I.I. Butt, Eur. Phys. J. C 78, 688 (2018)

    Article  ADS  Google Scholar 

  28. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 98, 104059 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. L. Herrera, A. Di Prisco, J. Ospino, Phys. Rev. D 99, 044049 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Contreras, E. Fuenmayor, G. Abellán, Eur. Phys. J. C 82, 187 (2022)

    Article  ADS  Google Scholar 

  31. E. Contreras, Z. Stuchlik, Eur. Phys. J. C 82, 706 (2022)

    Article  ADS  Google Scholar 

  32. G. Abbas, H. Nazar, Eur. Phys. J. C 78, 957 (2018)

    Article  ADS  Google Scholar 

  33. M. Sharif, A. Majid, M.M.M. Nasir, Int. J. Mod. Phys. A 34, 1950210 (2019)

    Article  ADS  Google Scholar 

  34. G. Abbas, R. Ahmed, Astrophys. Space Sci. 364, 1 (2019)

    Article  ADS  Google Scholar 

  35. M. Sharif, A. Majid, Chin. J. Phys. 61, 38 (2019)

    Article  Google Scholar 

  36. M. Sharif, A. Majid, Eur. Phys. J. C 80, 1 (2020)

    Article  ADS  Google Scholar 

  37. M. Sharif, A. Majid, Indian J. Phys. 95, 769 (2021)

    Article  ADS  Google Scholar 

  38. M. Zubair, H. Azmat, Phys. Dark Univer. 28, 100531 (2020)

    Article  Google Scholar 

  39. M. Zubair, H. Azmat, Ann. Phys. 420, 168267 (2020)

    Article  Google Scholar 

  40. M. Sharif, T. Naseer, Eur. Phys. J. Plus 137, 947 (2022)

    Article  Google Scholar 

  41. M. Sharif, T. Naseer, Chin. J. Phys. 77, 2655 (2022)

    Article  Google Scholar 

  42. Z. Yousaf, M.Z. Bhatti, K. Hassan, Eur. Phys. J. Plus 135, 397 (2020)

    Article  Google Scholar 

  43. Z. Yousaf et al., New Astron. 84, 101541 (2021)

    Article  Google Scholar 

  44. L. Herrera, A. Di Prisco, J. Ospino, Gen. Relativ. Gravit. 44, 2645 (2012)

    Article  ADS  Google Scholar 

  45. M.J.S. Houndjo et al., Can. J. Phys. 92, 1528 (2014)

    Article  ADS  Google Scholar 

  46. M. Sharif, I.I. Butt, Eur. Phys. J. C 78, 850 (2018)

    Article  ADS  Google Scholar 

  47. M. Sharif, I.I. Butt, Chin. J. Phys. 61, 238 (2019)

    Article  Google Scholar 

  48. M. Sharif, K. Hassan, Pramana 96, 50 (2022)

    Article  ADS  Google Scholar 

  49. M. Sharif, K. Hassan, Mod. Phys. Lett. A 37, 2250027 (2022)

    Article  ADS  Google Scholar 

  50. M. Sharif, K. Hassan, Chin. J. Phys 77, 1479 (2022)

    Article  Google Scholar 

  51. K.S. Thorne, Phys. Rev. 138, B251 (1965)

    Article  ADS  Google Scholar 

  52. K.S. Thorne, Phys. Rev. 139, B244 (1965)

    Article  ADS  Google Scholar 

  53. R.C. Tolman, Phys. Rev. 35, 875 (1930)

    Article  ADS  Google Scholar 

  54. L. Herrera et al., Phys. Lett. A 237, 113 (1998)

    Article  ADS  Google Scholar 

  55. L. Bel, Ann. l’inst. Henri Poincaré 17, 37 (1961)

    Google Scholar 

  56. L. Herrera et al., Phys. Rev. D 79, 064025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  57. M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)

    Article  ADS  Google Scholar 

  58. C. Arias et al., Ann. Phys. 436, 168671 (2022)

    Article  Google Scholar 

  59. M. Khan, S.A. Mardan, M.A. Rehman, Eur. Phys. J. Plus 136, 404 (2021)

    Article  Google Scholar 

  60. M. Khan, S.A. Mardan, M.A. Rehman, Eur. Phys. J. C 81, 831 (2021)

    Article  ADS  Google Scholar 

  61. L. Herrera, W. Barreto, Phys. Rev. 88, 084022 (2013)

    Google Scholar 

  62. L. Herrera, E. Fuenmayor, P. Leon, Phys. Rev. D 93, 024047 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  63. M.F. Shamir, M. Ahmad, Mod. Phys. Lett. A 34, 1950038 (2019)

    Article  ADS  Google Scholar 

  64. M.F. Shamir, N. Uzair, Mod. Phys. Lett. A 34, 1950215 (2019)

    Article  ADS  Google Scholar 

  65. F. de Felice, Y. Yu, Z. Fang, Mon. Not. R. Aston. Soc. 277, L17 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Appendix A

Appendix A

The modified term Z is expressed as

$$\begin{aligned} \textsf {Z} & = \frac{f_{T}}{k^{2}-f_{T}}\left[ \left( -p_{r}-p\right) \frac{f'_{T}}{f_{T}}-\frac{\textsf {q}\textsf {q}^{'}}{4\pi r^4}+\left( -2p_{r}L^2-pL^2\right) '-\frac{L^2}{2}(-\varrho +3p)^{'} \right] . \end{aligned}$$

The following describes the impact of additional terms in the scalar structure

$$\begin{aligned} \textsf {N}^{GT}_{\psi \chi } & = \left[ 2R_{m\delta }R^{m\gamma }f_{G}-RR^{\gamma }_{\delta }f_{G} +2R^{lm}R^{\gamma }_{l\delta m}f_{G}-2R_{\delta lmn}R^{lmn\gamma }f_{G}\right. \\&+\,\left. 2R^{\gamma }_{\delta }\Box f_{G}-2R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G}+R\nabla ^{\gamma }\nabla _{\delta }f_{G} -2R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&-\,\left. 2R^{\gamma }_{l\delta m}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{\psi \chi \gamma }\mathrm {u}^{\delta }, \\ \textsf {D}^{GT}_{\psi \chi } & = 2\left[ R_{m\chi }R^{m}_{\psi }f_{G}-\frac{1}{2}RR_{\psi \chi }f_{G}+ R^{lm}R_{l\chi m\psi }f_{G}-\frac{1}{2}R_{\chi lmn}R^{lmn}_{\psi }f_{G}+R_{\psi \chi }\Box f_{G}\right. \\&+\,\left. \frac{1}{2}R \nabla _{\psi }\nabla _{\chi }f_{G} -R^{m}_{\psi }\nabla _{\chi }\nabla _{m}f_{G} -R^{m}_{\chi }\nabla _{\psi }\nabla _{m}f_{G}-R_{l\chi m\psi }\nabla ^{m}\nabla ^{l}f_{G}\right] \\&+\,4R^{lm}h_{\psi \chi }\nabla _{m}\nabla _{l}f_{G}-2Rh_{\psi \chi }\Box f_{G}+2\left[ -R_{m\delta }R^{m}_{\psi }f_{G}- R^{lm}R_{l\delta m\psi }f_{G}\right. \\&+\,\left. \frac{1}{2}R_{\delta lmn}R^{lmn}_{\psi }f_{G}+\frac{1}{2}RR_{\psi \chi }f_{G} -R_{\delta \psi }\Box f_{G}+R_{l\delta m\psi }\nabla ^{m}\nabla ^{m}f_{G}\right. \\&-\,\left. \frac{1}{2}R \nabla _{\psi }\nabla _{\delta }f_{G}+R^{m}_{\psi }\nabla _{\delta }\nabla _{m}f_{G} +R^{m}_{\delta }\nabla _{\psi }\nabla _{m}f_{G}\right] \mathrm {u}_{\chi }\mathrm {u}^{\delta } +2\left[ -R_{m\chi }R^{m\gamma }f_{G}\right. \\&+\,\left. \frac{1}{2}R_{\chi lmn}R^{lmn\gamma }f_{G}- R^{lm}R^{\gamma }_{l\chi m}f_{G}+\frac{1}{2}RR^{\gamma }_{\chi }f_{G}-R^{\gamma }_{\chi }\Box f_{G}+R^{m\gamma }\nabla _{\chi }\nabla _{m}f_{G}\right. \\&-\,\left. \frac{1}{2}R \nabla ^{\gamma }\nabla _{\chi }f_{G}+R^{m}_{\chi }\nabla ^{\gamma }\nabla _{m}f_{G}+R^{\gamma }_{m\chi l}\nabla ^{m}\nabla ^{l}\right] \mathrm {u}_{\psi }\mathrm {u}_{\gamma }+ 2\left[ R_{m\delta }R^{m\gamma }f_{G}\right. \\&-\,\left. \frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}+R^{lm}R^{\gamma }_{l\delta m}f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}+R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}\right. \\&-\,\left. R^{\gamma }_{l\delta m}\nabla ^{m}\nabla ^{l}f_{G}-R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G} -R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m} f_{G}\right] g_{\psi \chi }\mathrm {u}_{\gamma }\mathrm {u}^{\delta } -\frac{1}{3}\left[ -2R^{2}f_{G}\right. \\&-\,\left. 2R^{\beta }_{lmn}R^{lmn}_{\beta }f_{G} -2R\Box f_{G}+4R^{m\alpha }R_{m\alpha }f_{G}+4R^{lm}R^{\alpha }_{m\alpha l}f_{G}+16R^{lm}\nabla _{m}\nabla _{l}f_{G}\right. \\&-\,\left. 4R^{m\beta }\nabla _{\beta }\nabla _{m}f_{G} -4R^{m\alpha }\nabla _{\alpha }\nabla _{m}f_{G}-4R^{\alpha }_{l\alpha m}\nabla ^{m}\nabla ^{l}f_{G}\right] h_{\psi \chi } -\frac{1}{6}fh_{\psi \chi },\\ \textsf {F}^{GT} & = 2\left[ R_{m\chi }R^{m}_{\psi }f_{G}+ R^{lm}R_{m\chi l\psi }f_{G}-\frac{1}{2}RR_{\psi \chi }f_{G}-\frac{1}{2}R_{\chi \chi lmn}R^{lmn}_{\psi }f_{G}+R_{\psi \chi }\Box f_{G}\right. \\&+\,\left. \frac{1}{2}R \nabla _{\psi }\nabla _{\chi }f_{G}-R^{m}_{\psi }\nabla _{\chi }\nabla _{m}f_{G} -R^{m}_{\chi }\nabla _{\psi }\nabla _{m}f_{G}-R_{m\chi l\psi }\nabla ^{m}\nabla ^{l}f_{G}\right] g^{\psi \chi }\\&+\,12R^{lm}\nabla _{m}\nabla _{l}f_{G}-6R\Box f_{G}+2\left[ -R_{m\delta }R^{m}_{\psi }f_{G}- R^{lm}R_{m\delta l\psi }f_{G}+\frac{1}{2}RR_{\psi \delta }f_{G}\right. \\&-\,\left. \frac{1}{2}R \nabla _{\psi }\nabla _{\delta }f_{G}-R_{\delta \psi }\Box f_{G}+R_{m\delta l\psi }\nabla ^{m}\nabla ^{l}f_{G}+R^{m}_{\psi }\nabla _{\delta }\nabla _{m}f_{G} +R^{m}_{\delta }\nabla _{\psi }\nabla _{m}f_{G}\right. \\&+\,\left. \frac{1}{2}R_{\delta lmn}R^{lmn}_{\psi }f_{G}\right] \mathrm {u}_{\chi }\mathrm {u}^{\delta }g^{\psi \chi } +2\left[ -R_{m\chi }R^{m\gamma }f_{G}- R^{lm}R^{\gamma }_{m\chi l}f_{G}+\frac{1}{2}RR^{\gamma }_{\chi }f_{G}\right. \\&+\,vvvvv\left. \frac{1}{2}R_{\chi lmn}R^{lmn\gamma }f_{G}-R^{\gamma }_{\chi }\Box f_{G}+R^{m\gamma }\nabla _{\chi }\nabla _{m}f_{G}+R^{m}_{\chi } \nabla ^{\gamma }\nabla _{m}f_{G}+R^{\gamma }_{m\chi l}\nabla ^{m}\nabla ^{l}f_{G}\right. \\&-\,\left. \frac{1}{2}R \nabla ^{\gamma }\nabla _{\chi }f_{G}\right] \mathrm {u}_{\psi }\mathrm {u}_{\gamma }g^{\psi \chi }+ 2\left[ R_{m\delta }R^{m\gamma }f_{G}+ R^{lm}R^{\gamma }_{m\delta l}f_{G}-R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G}\right. \\&-\,\left. \frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}+R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G} -R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m} f_{G}\right. \\&-\,\left. R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] g_{\psi \chi }\mathrm {u}_{\gamma }\mathrm {u}^{\delta }g^{\psi \chi } -\left[ 4R^{l\alpha }R_{l\alpha }f_{G}+4R^{lm}R^{\alpha }_{l\alpha m}f_{G}-2R^{2}f_{G}\right. \\&-\,\left. 2R^{\beta }_{lmn}R^{lmn}_{\beta }f_{G}-2R\Box f_{G}+16R^{lm}\nabla _{m}\nabla _{l}f_{G} -4R^{m\alpha }\nabla _{\alpha }\nabla _{m}f_{G}\right. \\&-\,\left. 4R^{m\beta }\nabla _{\beta }\nabla _{m}f_{G} -4R^{\alpha }_{l\alpha m}\nabla ^{m}\nabla ^{l}f_{G}\right] - \frac{1}{2}f,\\ \textsf {Q}^{GT}_{(\psi \chi )} & = \left[ 2R_{md}R^{m}_{c}f_{G}+2R^{lm}R_{ldmc}f_{G}-RR_{cd}f_{G}-R_{dlmn}R^{lmn}_{c}f_{G}+2R_{cd}\Box f_{G}\right. \\&+\,\left. R\nabla _{c}\nabla _{d}f_{G}-2R^{m}_{c}\nabla _{d}\nabla _{m}f_{G}-2R^{m}_{d}\nabla _{c}\nabla _{m}f_{G} -2R_{ldmc}\nabla ^{m}\nabla ^{l}f_{G}\right] h^{c}_{\psi }h^{d}_{\chi }\\&+\,2\left[ R_{m\delta }R^{m\gamma }f_{G}+ R^{lm}R^{\gamma }_{m\delta l}f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}-\frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}\right. \\&+\,\left. R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}-R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G} -R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&-\,\left. R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] h_{\psi \chi } \mathrm {u}_{\gamma }\mathrm {u}^{\delta }-2\left[ R_{m\chi }R^{m}_{\psi }f_{G}+ R^{lm}R_{m\chi l\psi }f_{G}-\frac{1}{2}RR_{\psi \chi }f_{G}\right. \\&-\,\left. \frac{1}{2}R_{\chi lmn}R^{lmn}_{\psi }f_{G}+R_{\psi \chi }\Box f_{G}+\frac{1}{2}R \nabla _{\psi }\nabla _{\chi }f_{G}-R^{m}_{\psi }\nabla _{\chi }\nabla _{m}f_{G}\right. \\&-\,\left. R^{m}_{\chi }\nabla _{\psi }\nabla _{m}f_{G}-R_{m\chi l\psi }\nabla ^{m}\nabla ^{l}f_{G}\right] -2\left[ -R_{m\delta }R^{m}_{\psi }f_{G}- R^{lm}R_{m\delta l\psi }f_{G}\right. \\&+\,\left. \frac{1}{2}RR_{\psi \delta }f_{G}+\frac{1}{2}R_{\delta lmn}R^{lmn}_{\psi }f_{G}-R_{\delta \psi }\Box f_{G}+R_{m\delta l\psi }\nabla ^{m}\nabla ^{l}f_{G}\right. \\&+\,\left. R^{m}_{\psi }\nabla _{\delta }\nabla _{m}f_{G} +R^{m}_{\delta }\nabla _{\psi }\nabla _{m}f_{G}-\frac{1}{2}R \nabla _{\psi }\nabla _{\delta }f_{G}\right] \mathrm {u}_{\chi } \mathrm {u}^{\delta }-2\left[ -R_{m\chi }R^{m\gamma }f_{G}\right. \\&-\,\left. R^{lm}R^{\gamma }_{m\chi l}f_{G}+\frac{1}{2}RR^{\gamma }_{\chi }f_{G}+\frac{1}{2}R_{\chi lmn}R^{lmn\gamma }f_{G}-R^{\gamma }_{\chi }\Box f_{G}\right. \\&+\,\left. R^{m\gamma }\nabla _{\chi }\nabla _{m}f_{G}+R^{m}_{\chi }\nabla ^{\gamma }\nabla _{m}f_{G}+R^{\gamma }_{m\chi l}\nabla ^{m}\nabla ^{l}f_{G}-\frac{1}{2}R \nabla ^{\gamma }\nabla _{\chi }f_{G}\right] \mathrm {u}_{\psi }\mathrm {u}_{\gamma }\\&-\,2\left[ R_{m\delta }R^{m\gamma }f_{G}+ R^{lm}R^{\gamma }_{m\delta l}f_{G}-\frac{1}{2}RR^{\gamma }_{\delta }f_{G}-\frac{1}{2}R_{\delta lmn}R^{lmn \gamma }f_{G}\right. \\&+\,\left. R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{2}R \nabla ^{\gamma }\nabla _{\delta }f_{G}-R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G} -R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}\right. \\&-\,\left. R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] \mathrm {u}_{\gamma }\mathrm {u}^{\delta }g_{\psi \chi },\\ \textsf {M}^{GT}_{\psi \chi } & = \left[ \frac{1}{2}R_{m\epsilon }R^{m p}f_{G}+\frac{1}{2}R^{lm}R^{p}_{m\epsilon l}f_{G}-\frac{1}{4}RR^{p}_{\epsilon }f_{G}-\frac{1}{4}R_{\epsilon lmn}R^{lmn p}f_{G}\right. \\&+\,\left. \frac{1}{2} R^{p}_{\epsilon }\Box f_{G}+\frac{1}{4}R\nabla ^{p}\nabla _{\epsilon }f_{G} -\frac{1}{4}R^{lp}\nabla _{\epsilon }\nabla _{m}f_{G} -\frac{1}{2}R^{m}_{\epsilon }\nabla ^{p}\nabla _{m} f_{G}\right. \\&-\,\left. \frac{1}{2}R^{p}_{m\epsilon l}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{p \delta \chi }\epsilon ^{\epsilon \delta }_{\psi } +\left[ -\frac{1}{2}R_{m\delta }R^{lp}f_{G}-\frac{1}{2}R^{lm}R^{p}_{m\delta l}f_{G}\right. \\&+\,\left. \frac{1}{4}RR^{p}_{\delta }f_{G}+\frac{1}{4}R_{\delta lmn}R^{lmnp}f_{G}-\frac{1}{2}R^{p}_{\delta }\Box f_{G}-\frac{1}{4}R\nabla ^{p}\nabla _{\delta }f_{G}\right. \\&+\,\left. \frac{1}{4}R^{lp}\nabla _{\delta }\nabla _{m}f_{G} +\frac{1}{2}R^{m}_{\delta }\nabla ^{p}\nabla _{m}f_{G} +\frac{1}{2}R^{p}_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{p\epsilon \chi }\epsilon ^{\epsilon \delta }_{\psi }\\&+\,\left[ -\frac{1}{2}R_{m\epsilon }R^{m\gamma }f_{G} -\frac{1}{2}R^{lm}R^{\gamma }_{m\epsilon l}f_{G} +\frac{1}{4}RR^{\gamma }_{\epsilon }f_{G}+\frac{1}{4}R_{\epsilon lmn}R^{lmn\gamma }f_{G}\right. \\&-\,\left. \frac{1}{2}R^{\gamma }_{\epsilon }\Box f_{G}-\frac{1}{4}R\nabla ^{\gamma }\nabla _{\epsilon }f_{G} +\frac{1}{4}R^{m\gamma }\nabla _{\epsilon }\nabla _{m}f_{G} +\frac{1}{2}R^{m}_{\epsilon }\nabla ^{\gamma }\nabla _{m} f_{G}\right. \\&+\,\left. \frac{1}{2}R^{\gamma }_{m\epsilon l}\nabla ^{m} \nabla ^{l}f_{G}\right] \epsilon _{\delta \gamma \chi } \epsilon ^{\epsilon \delta }_{\psi }+\left[ \frac{1}{2}R_{m\delta }R^{m\gamma }f_{G} +\frac{1}{2}R^{lm}R^{\gamma }_{m\delta l}f_{G}\right. \\&-\,\left. \frac{1}{4}RR^{\gamma }_{\delta }f_{G}-\frac{1}{4}R_{\delta lmn}R^{lmn\gamma }f_{G}+\frac{1}{2}R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{4}R\nabla ^{\gamma }\nabla _{\delta }f_{G}\right. \\&-\,\left. \frac{1}{4}R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G} -\frac{1}{2}R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}-\frac{1}{2}R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] \epsilon _{\epsilon \gamma \chi }\epsilon ^{\epsilon \delta }_{\psi }\\&-\,4R^{lm}\nabla _{m}\nabla _{l}h_{\psi \chi }f_{G} +2Rh_{\psi \chi }\Box f_{G} +\frac{1}{3}\left[ \left( \varrho +p\right) f_{T}+4R^{m\alpha }R_{m\alpha }f_{G}\right. \\&+\,\left. 4R^{lm}R^{\alpha }_{l\alpha m}f_{G}-2R^{2}f_{G}-2R^{\beta }_{lmn}R^{lmn}_{\beta }f_{G}-2R\Box f_{G}\right. \\&+\,\left. 16R^{lm}\nabla _{m}\nabla _{l}f_{G}-4R^{m\alpha }\nabla _{\alpha }\nabla _{m}f_{G} -4R^{m\beta }\nabla _{\beta }\nabla _{m}f_{G}\right. \\&-\,\left. 4R^{\alpha }_{l\alpha m}\nabla ^{m}\nabla ^{l}f_{G}\right] h_{\psi \chi }+\frac{1}{6}fh_{\psi \chi },\\ \textsf {O}^{GT} & = \left[ \frac{1}{2}R_{m\epsilon }R^{m p}f_{G}+\frac{1}{2}R^{lm}R^{p}_{m\epsilon l}f_{G}-\frac{1}{4}RR^{p}_{\epsilon }f_{G}-\frac{1}{4}R_{\epsilon lmn}R^{lmn p}f_{G}\right. \\&+\,\left. \frac{1}{2} R^{p}_{\epsilon }\Box f_{G}+\frac{1}{4}R\nabla ^{p}\nabla _{\epsilon }f_{G} -\frac{1}{4}R^{lp}\nabla _{\epsilon }\nabla _{m}f_{G}-\frac{1}{2}R^{m}_{\epsilon }\nabla ^{p}\nabla _{m} f_{G}\right. \\&-\,\left. \frac{1}{2}R^{p}_{m\epsilon l}\nabla ^{m}\nabla ^{l}f_{G}\right] g^{\psi \chi }\epsilon _{p \delta \chi }\epsilon ^{\epsilon \delta }_{\psi }+\left[ -\frac{1}{2}R_{m\delta }R^{lp}f_{G}-\frac{1}{2}R^{lm}R^{p}_{m\delta l}f_{G}\right. \\&+\,\left. \frac{1}{4}RR^{p}_{\delta }f_{G}+\frac{1}{4}R_{\delta lmn}R^{lmnp}f_{G}-\frac{1}{2}R^{p}_{\delta }\Box f_{G}-\frac{1}{4}R\nabla ^{p}\nabla _{\delta }f_{G}\right. \\&+\,\left. \frac{1}{4}R^{lp}\nabla _{\delta }\nabla _{m}f_{G}+\frac{1}{2} R^{m}_{\delta }\nabla ^{p}\nabla _{m}f_{G} +\frac{1}{2}R^{p}_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] g^{\psi \chi }\epsilon _{p\epsilon \chi }\epsilon ^{\epsilon \delta }_{\psi }\\&+\,\left[ -\frac{1}{2}R_{m\epsilon }R^{m\gamma }f_{G}-\frac{1}{2}R^{lm}R^{\gamma }_{m\epsilon l}f_{G} +\frac{1}{4}RR^{\gamma }_{\epsilon }f_{G}+\frac{1}{4}R_{\epsilon lmn}R^{lmn\gamma }f_{G}\right. \\&-\,\left. \frac{1}{2}R^{\gamma }_{\epsilon }\Box f_{G}-\frac{1}{4}R\nabla ^{\gamma }\nabla _{\epsilon }f_{G}+\frac{1}{4}R^{m\gamma }\nabla _{\epsilon }\nabla _{m}f_{G} +\frac{1}{2}R^{m}_{\epsilon }\nabla ^{\gamma }\nabla _{m} f_{G}\right. \\&+\,\left. \frac{1}{2}R^{\gamma }_{m\epsilon l}\nabla ^{m} \nabla ^{l}f_{G}\right] g^{\psi \chi }\epsilon _{\delta \gamma \chi } \epsilon ^{\epsilon \delta }_{\psi }+\left[ \frac{1}{2}R_{m\delta }R^{m\gamma }f_{G} +\frac{1}{2}R^{lm}R^{\gamma }_{m\delta l}f_{G}\right. \\&-\,\left. \frac{1}{4}RR^{\gamma }_{\delta }f_{G}-\frac{1}{4}R_{\delta lmn}R^{lmn\gamma }f_{G}+\frac{1}{2}R^{\gamma }_{\delta }\Box f_{G}+\frac{1}{4}R\nabla ^{\gamma }\nabla _{\delta }f_{G}\right. \\&-\,\left. \frac{1}{4}R^{m\gamma }\nabla _{\delta }\nabla _{m}f_{G} -\frac{1}{2}R^{m}_{\delta }\nabla ^{\gamma }\nabla _{m}f_{G}-\frac{1}{2}R^{\gamma }_{m\delta l}\nabla ^{m}\nabla ^{l}f_{G}\right] g^{\psi \chi }\epsilon _{\epsilon \gamma \chi }\epsilon ^{\epsilon \delta }_{\psi }\\&-\,12R^{lm}\nabla _{m}\nabla _{l}h_{\psi \chi }f_{G} +6R\Box f_{G} +\left[ \left( \varrho +p\right) f_{T}+4R^{l\psi }R_{l\psi }f_{G}\right. \\&+\,\left. 4R^{lm}R^{\psi }_{l\psi m}f_{G}-2R^{\chi }_{lmn}R^{lmn}_{\chi }f_{G}-2R^{2}f_{G}-2R\Box f_{G}\right. \\&+\,\left. 16R^{lm}\nabla _{l}\nabla _{m}f_{G} -4R^{l\chi }\nabla _{\chi }\nabla _{l}f_{G}-4R^{l\psi }\nabla _{\psi }\nabla _{l}f_{G}\right. \\&-\,\left. 4R^{\psi }_{l\psi m}\nabla ^{l}\nabla ^{m}f_{G}\right] +\frac{1}{2}f. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Hassan, K. Electromagnetic effects on the complexity of static cylindrical object in f(GT) gravity. Eur. Phys. J. Plus 137, 1380 (2022). https://doi.org/10.1140/epjp/s13360-022-03612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03612-8

Navigation