Skip to main content
Log in

Influence of complex conductivity on rotary penetration drag of the surface plasmon polaritons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recent developments in plasmonic sensors have surpassed optical sensor’s efficiency due to their ultrasmall sizes, high sensitivity, and tunability. The investigation of the rotary drag of surface plasmon polaritons has greatly enhanced the sensitivity of plasmonic sensors. In this article, Surface Plasmon Polaritons are theoretically investigated at the interface of Cesium (Cs) and Silver–silica nano-composite media. Significant enhancement in plasmon polariton’s rotary drag is observed by changing the phase and amplitude of the complex conductivity of the Cs. The maximum rotary drag achieved at the propagation length along the interface is \(4\times 10^{-10}\) radian. The achieved value of drag at the penetration depth of silica nano-composite is of the order of \(4\times 10^{-11} \) radian, which is ten times smaller than the drag at the propagation length. Similarly, the value of drag achieved at the penetration depth of Cs is in the order of 4 pico-radian, which is twenty times smaller than the drag at the propagation length and ten times smaller than the drag at the penetration depth of silica nano-composite. The enhancement in rotary drag of Surface Plasmon Polariton at the propagation length and penetration depths may find significant applications in sensor devices, photo-imaging, and device designing technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This paper is theoretical research and has no associated data.

References

  1. M. Tame, K. McEnery, S. ízdemir. et al., Quantum plasmonics. Nat. Phys. (2013). https://doi.org/10.1038/nphys2615

    Article  Google Scholar 

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature (2003). https://doi.org/10.1038/nature01937

    Article  Google Scholar 

  3. N. Khan, B.A. Bacha, A. Iqbal, A.U. Rahman, A. Afaq, Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons. Erratum Phys. Rev. A (2017). https://doi.org/10.1103/PhysRevA.96.013848

    Article  Google Scholar 

  4. A. Passian, A.L. Lereu, A. Wig, F. Meriaudeau, T. Thundat, T.L. Ferrell, Imaging standing surface plasmons by photon tunneling. Phys. Rev. B 71(16), 165418 (2005)

    Article  ADS  Google Scholar 

  5. T. Zhang, F. Shan, Development and application of surface plasmon polaritons on optical amplification. Nanomaterials (2014). https://doi.org/10.1155/2014/495381

    Article  Google Scholar 

  6. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. (2008). https://doi.org/10.1038/nmat2162

    Article  Google Scholar 

  7. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors. Nat. Mater. (2008). https://doi.org/10.1038/nmat2162

    Article  Google Scholar 

  8. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. (2010). https://doi.org/10.1038/nmat2629

    Article  Google Scholar 

  9. S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. (2011). https://doi.org/10.1038/nmat3151

    Article  Google Scholar 

  10. Z. Han, S.I. Bozhevolnyi, Radiation guiding with surface plasmon polaritons. Reports on progress in physics. Physical Society (Great Britain). (2013). https://doi.org/10.1088/0034-4885/76/1/016402

    Article  Google Scholar 

  11. A.M. Gobin, M.H. Lee, N.J. Halas, W.D. James, R.A. Drezek, J.L. West, Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. (2007). https://doi.org/10.1021/nl070610y

    Article  Google Scholar 

  12. Reece, P. J.:Plasmonics-finer optical tweezers. Nature Publishing Group. http://condmat.physics.manchester.ac.uk/pdf/mesoscopic/news/graphene/ Naturephot (2008). Accessed June2008

  13. M.L. Juan, M. Righini, R. Quidant, Plasmon nano-optical tweezers. Nat. Photon. (2011). https://doi.org/10.1038/nphoton.2011.56

    Article  Google Scholar 

  14. Mecklenburg, M., Hubbard, W. A., White, E. R., Dhall, R., Cronin, S. B., Aloni, S., Regan, B. C.:Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices. Science(New York, N.Y.)(2015). 10.1126/science.aaa2433

  15. I. Goykhman, B. Desiatov, J.B. Khurgin, J. Shappir, U. Levy, Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime. Nano. Lett. (2011). https://doi.org/10.1021/nl200187v

    Article  Google Scholar 

  16. Homola J., Piliarik M.:Surface Plasmon Resonance (SPR) Sensors. In: Homola J. (eds.) Surface Plasmon Resonance Based Sensors. Springer Series on Chemical Sensors and Biosensors, pp. 45-67 Springer, Berlin, Heidelberg(2006)

  17. Raether H.:Surface plasmons on smooth surfaces. In. Surface Plasmons on Smooth and Rough Surfaces and on Gratings.(eds.) Springer Tracts in Modern Physics, pp.4-39. Springer, Berlin, Heidelberg(2006)

  18. A. Boltasseva, H.A. Atwater, Low-Loss Plasmonic Metamaterials. Science (2011). https://doi.org/10.1126/science.1198258

    Article  Google Scholar 

  19. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Silver Nanowires as Surface Plasmon Resonators. Phys. Rev. Lett. (2005). https://doi.org/10.1103/PhysRevLett.95.257403

    Article  Google Scholar 

  20. P. Kusar, C. Gruber, A. Hohenau, J.R. Krenn, Measurement and reduction of damping in plasmonic nanowires. Nano Lett. (2012). https://doi.org/10.1021/nl203452d

    Article  Google Scholar 

  21. A. Paul, D. Solis Jr., K. Bao et al., Identification of higher order long-propagation-length surface plasmon polariton modes in chemically prepared gold nanowires. ACS Nano (2012). https://doi.org/10.1021/nn3027112

    Article  Google Scholar 

  22. I. Suarez, A. Ferrando, J. Marques-Hueso, A. Díez, R. Abargues, P.J. Rodríguez-Cantó, J.P. Martí-nez-Pastor, Propagation length enhancement of surface plasmon polaritons in gold nano-/micro-waveguides by the interference with photonic modes in the surrounding active dielectrics. Nanophotonics (2017). https://doi.org/10.1515/nanoph-2016-0166

    Article  Google Scholar 

  23. M.A. Izadi, R. Nouroozi, Adjustable Propagation Length Enhancement of the Surface Plasmon Polariton Wave via Phase Sensitive Optical Parametric Amplification (Rep. Lett, Sci, 2018). https://doi.org/10.1021/nl052471v

    Book  Google Scholar 

  24. D.I. Nazarova, L.L. Nedelchev, P.S. Sharlandjiev, Surface plasmon polariton characteristics and resonant coupling on thin Al, Ag and Au layers. Bulg. Chem. Commun. 45, 119–123 (2013)

    Google Scholar 

  25. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik. (1968). https://doi.org/10.1007/BF01391532

    Article  Google Scholar 

  26. W.L. Barnes, Surface plasmon polariton length scales: a route to sub-wavelength optics, J (A. Pure Appl. Op, Opt, 2006). https://doi.org/10.1088/1464-4258/8/4/s06

    Book  Google Scholar 

  27. P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures. Phys. Rev. B. (2000). https://doi.org/10.1103/PhysRevB.61.10484

    Article  Google Scholar 

  28. A.J. Fresnel, Ann. Chim. Phys. 9, 57 (1818)

    Google Scholar 

  29. P.C. Kuan, C. Huang, W.S. Chan, S. Kosen, S.Y. Lan, Large Fizeaus light-dragging effect in a moving electromagnetically induced transparent medium. Nat. Commun. (2016). https://doi.org/10.1038/ncomms13030

    Article  Google Scholar 

  30. E.J. Post, Sagnac effect. Rev. Mod. Phys (1967). https://doi.org/10.1103/RevModPhys.39.475

    Article  Google Scholar 

  31. H. Kurosawa, T. Ishihara, Surface plasmon drag effect in a dielectrically modulated metallic thin film. Opt. Exp. (2012). https://doi.org/10.1364/OE.20.001561

    Article  Google Scholar 

  32. S. Ahmad, A. Ahmad, B.A. Bacha et al., Solitary waves of surface plasmon polariton via phase shifts under Doppler broadening and Kerr nonlinearity (Phys. J. Plus, Eur, 2017). https://doi.org/10.1140/epjp/i2017-11760-9

    Book  Google Scholar 

  33. H. Nawab, M. Usman, M. Idrees, B.A. Bacha, Rotary penetration drag of surface plasmon polaritons at atomic and nano-composite media. Opt. Quant. Electron. 53(6), 1–13 (2021)

    Article  Google Scholar 

  34. L. Nieradko, C. Gorecki, A. Douahi, V. Giordano, J.C. Beugnot, J.A. Dziuban, M. Moraja, New approach of fabrication and dispensing of micromachined cesium vapor cell. J. Micro Nanolithography, MEMS MOEMS 7(3), 033013 (2008)

    Article  Google Scholar 

  35. M. Guo, H. Zhou, D. Wang, J. Gao, J. Zhang, S. Zhu, Experimental investigation of high-frequency-difference twin beams in hot cesium atoms. Physical Review A 89(3), 033813 (2014)

    Article  ADS  Google Scholar 

  36. R. Ma, W. Liu, Z. Qin, X. Jia, J. Gao, Generating quantum correlated twin beams by four-wave mixing in hot cesium vapor. Phys. Rev. A. 96(4), 043843 (2017)

    Article  ADS  Google Scholar 

  37. A.V. Rodionov, A. Veitia, R. Barends, J. Kelly, D. Sank, J. Wenner, A.N. Korotkov, Compressed sensing quantum process tomography for superconducting quantum gates. Phys. Rev. B. 90(14), 144504 (2014)

    Article  ADS  Google Scholar 

  38. G. Li, H. Wang, T. Zhang, L. Mi, Y. Zhang, Z. Zhang, Y. Jiang, Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes. Adv. Funct. Mater. 26(46), 8478–8486 (2016)

    Article  Google Scholar 

  39. Eckertova, L. (2012). Physics of thin films. Springer Science and Business Media

  40. K.T. Kapale, M.S. Zubairy, Subwavelength atom localization via amplitude and phase control of the absorption spectrum. Phys. Rev. A. (2006). https://doi.org/10.1103/PhysRevA.73.023813

    Article  Google Scholar 

  41. H.J. Metcalf, P. van der Straten, Laser Cool. Trapp. (1999). https://doi.org/10.1364/JOSAB.20.000887

    Article  Google Scholar 

  42. B.A. Bacha, T. Khan, N. Khan, S.A. Ullah, M.S.A. Jabar, A. Rahman, The hybrid mode propagation of surface plasmon polaritons at the interface of graphene and a chiral medium (Phys. J. Plus, Eur, 2018). https://doi.org/10.1140/epjp/i2018-12386-1

    Book  Google Scholar 

  43. R. Khan, M. Haneef, M. Iqbal, Z. Khan, B.A. Bacha, H. Khan, Bakhtawar (2019) Phys. Scr. 10.1088/1402-4896/ab0b1b

  44. K. Ali, M. Ullah, B.A. Bacha et al., Complex conductivity-dependent two-dimensional atom microscopy (Phys. J. Plus, Eur, 2019). https://doi.org/10.1140/epjp/i2019-12978-1

    Book  Google Scholar 

  45. G. Piredda, D.D. Smith, B. Wendling, R.W. Boyd, J. Opt. Soc. Am. B 25, 945 (2008)

    Article  ADS  Google Scholar 

  46. J. Mendoza, J.A. Reyes, Z.G. Avendano, Phys. Rev. A 94, 053839 (2016)

    Article  ADS  Google Scholar 

  47. R. Din, F. Badshah, I. Ahmad and G.Q. Ge1, Tunable surface plasmon polaritons at the surfaces of nanocomposite media EPL 122 17001 (2018)

  48. S.F. Arnold, G. Gibson, R.W. Boyd, M.J. Padgett, Rotary photon drag enhanced by a slow-light medium. Sci 333, 65–7 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atta ur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Akbar, J., Rahman, A.u. et al. Influence of complex conductivity on rotary penetration drag of the surface plasmon polaritons. Eur. Phys. J. Plus 137, 1342 (2022). https://doi.org/10.1140/epjp/s13360-022-03576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03576-9

Navigation