Skip to main content
Log in

Silent-enhancement of multiple Raman modes via tuning optical properties of graphene nanostructures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Raman scattering signal can be enhanced through localization of incident field into sub-wavelength hot-spots through plasmonic nanostructures (surface-enhanced raman scattering—SERS). Recently, further enhancement of SERS signal via quantum objects are proposed by Postaci (Nanophotonics 7:1687, 2018) without increasing the hot-spot intensity (silent-enhancement) where this suggestion prevents the modification of vibrational modes or the breakdown of molecules. The method utilizes path interference in the nonlinear response of Stokes-shifted Raman modes. In this work, we extend this phenomenon to tune the spectral position of silent-enhancement factor where the multiple vibrational modes can be detected with a better signal-to-noise ratio, simultaneously. This can be achieved in two different schemes by employing either (i) graphene structures with quantum emitters or (ii) replacing quantum emitters with graphene spherical nano-shell in Postaci (Nanophotonics 7:1687, 2018). In addition, the latter system is exactly solvable in the steady-state. These suggestions not only preserve conventional nonlinear Raman processes but also provide flexibility to enhance (silently) multiple vibrational Raman modes due to the tunable optical properties of graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. M.L. Brongersma, V.M. Shalaev, Science 328, 440 (2010)

    Article  ADS  Google Scholar 

  2. S. Lal, S. Link, N.J. Halas, Nat. Photon. 2007 1:11 0bf1, 641 (2007)

  3. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007), pp.1–223

    Book  Google Scholar 

  4. T. Vary, P. Markoa, 7353, 153 (2009)

  5. V. Giannini, A.I. Fernndez-Domnguez, S.C. Heck, S.A. Maier, Chem. Rev. 111, 3888 (2011)

    Article  Google Scholar 

  6. X. Shen, T.J. Cui, D. Martin-Cano, F.J. Garcia-Vidal, Proc. Nat. Acad. Sci. USA 110, 40 (2013)

    Article  ADS  Google Scholar 

  7. M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Chem. Rev. 108, 494 (2008)

    Article  Google Scholar 

  8. A. Campion, P. Kambhampati, Chem. Soc. Rev. 27, 241 (1998)

    Article  Google Scholar 

  9. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163 (1974)

    Article  ADS  Google Scholar 

  10. A. Otto, J. Raman Spectrosc. 36, 497 (2005)

    Article  ADS  Google Scholar 

  11. E.C.L. Ru, S.A. Meyer, C. Artur, P.G. Etchegoin, J. Grand, P. Lang, F. Maurel, Chem. Commun. 47, 3903 (2011)

    Article  Google Scholar 

  12. S.Y. Ding, E.M. You, Z.Q. Tian, M. Moskovits, Chem. Soc. Rev. 46, 4042 (2017)

    Article  Google Scholar 

  13. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  Google Scholar 

  14. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Phys. Rev. Lett. 78, 1667 (1997)

    Article  ADS  Google Scholar 

  15. Y. Chu, M.G. Banaee, K.B. Crozier, ACS Nano 4(5), 2804 (2010).

    Article  Google Scholar 

  16. J. He, C. Fan, P. Ding, S. Zhu, E. Liang, Sci. Rep. 6 (2016)

  17. J. Ye, F. Wen, H. Sobhani, J.B. Lassiter, P. Van Dorpe, P. Nordlander, N.J. Halas, Nano Lett. 12(3), 1660 (2012)

    Article  ADS  Google Scholar 

  18. R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang, L.G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J.L. Yang, J.G. Hou, Nature 498(7452), 82 (2013)

    Article  ADS  Google Scholar 

  19. M.O. Scully, M.S. Zubairy, (Cambridge University Press, 1997)

  20. A. Hajebifard, P. Berini, Opt. Express 25(16), 18566 (2017)

    Article  ADS  Google Scholar 

  21. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P.V. Duyne, Nat. Mater. 2008 7:6 7, 442 (2008)

  22. B.C. Yildiz, A. Bek, M.E. Tasgin, Phys. Rev. B 101, 035416 (2020)

    Article  ADS  Google Scholar 

  23. R. Sahin, Opt. Commun. 454, 124431 (2020)

    Article  Google Scholar 

  24. R.V. Ovali, R. Sahin, A. Bek, M.E. Tasgin, Appl.Phys. Lett. 118(24) (2021)

  25. M. Gunay, V. Karanikolas, R. Sahin, R.V. Ovali, A. Bek, M.E. Tasgin, Phys. Rev. B 101(16) (2020)

  26. M. Gunay, Z. Artvin, A. Bek, M.E. Tasgin, J. Mod. Opt. 67, 26 (2020)

    Article  ADS  Google Scholar 

  27. S.K. Singh, M.K. Abak, M.E. Tasgin, Phys. Rev. B 93, 035410 (2016)

    Article  ADS  Google Scholar 

  28. D. Turkpence, G.B. Akguc, A. Bek, M.E. Tasgin, J. Opt. U.K. 16 (2014)

  29. H. Asif, R. Sahin, J. Opt. 24(4), 045003 (2022)

    Article  ADS  Google Scholar 

  30. M.E. Tasgin, A. Bek, S. Postaci, Springer series in optical sciences 219, 1 (2018)

    Article  Google Scholar 

  31. B.C. Yildiz, M.E. Tasgin, M.K. Abak, S. Coskun, H.E. Unalan, A. Bek, J. Opt. 17, 125005 (2015)

    Article  ADS  Google Scholar 

  32. B. Sharma, R.R. Frontiera, A.I. Henry, E. Ringe, R.P.V. Duyne, Mater. Today 15, 16 (2012)

    Article  Google Scholar 

  33. D. Richards, R.G. Milner, F. Huang, F. Festy, J. Raman Spectrosc. 34, 663 (2003)

    Article  ADS  Google Scholar 

  34. C.B. Schaffer, A. Brodeur, E. Mazur, Meas. Sci. Technol. 12, 1784 (2001)

    Article  ADS  Google Scholar 

  35. S. Postaci, B.C. Yildiz, A. Bek, M.E. Tasgin, Nanophotonics 7, 1687 (2018)

    Article  Google Scholar 

  36. C.N. Rao, A.K. Sood, R. Voggu, K.S. Subrahmanyam, J. Phys. Chem. Lett. 1, 572 (2010)

    Article  Google Scholar 

  37. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Nat. Phys. 2008 4:7 4, 532 (2008)

  38. F.H. Koppens, T. Mueller, P. Avouris, A.C. Ferrari, M.S. Vitiello, M. Polini, Nat. Nanotechnol. 9, 780 (2014)

    Article  ADS  Google Scholar 

  39. T. Mueller, F. Xia, P. Avouris, Nat. Photon. 2010 4:5 4, 297 (2010)

  40. Z. Fang, Y. Wang, A.E. Schlather, Z. Liu, P.M. Ajayan, F.J.G.D. Abajo, P. Nordlander, X. Zhu, N.J. Halas, Nano Lett. 14, 299 (2014)

    Article  ADS  Google Scholar 

  41. M. Jablan, H. Buljan, M. Soljačić, Phys. Rev. B Condensed Matter Mater. Phys. 80, 245435 (2009)

    Article  ADS  Google Scholar 

  42. S. Kumar, Photon Nanostruct Fundam. Appl. 46, 100956 (2021)

    Article  Google Scholar 

  43. U. Guler, G.V. Naik, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, Appl. Phys. B Lasers Opt. 107(2), 285 (2012)

    Article  ADS  Google Scholar 

  44. S. Juneja, M.S. Shishodia, Opt. Commun. 433, 89 (2019)

    Article  ADS  Google Scholar 

  45. U. Guler, J.C. Ndukaife, G.V. Naik, A.G. Nnanna, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, Nano Lett. 13, 6078 (2013)

    Article  ADS  Google Scholar 

  46. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  47. M. Premaratne, M.I. Stockman, Adv. Opt. Photon. 9(1), 79–128 (2017)

    Article  Google Scholar 

  48. G.V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 1(6), 1090 (2011)

    Article  ADS  Google Scholar 

  49. A. Vakil, N. Engheta, Science 332, 1291 (2011)

    Article  ADS  Google Scholar 

  50. U. Hohenester, A. Trügler, Comput. Phys. Commun. 183(2), 370 (2012)

    Article  ADS  Google Scholar 

  51. X. Wu, S.K. Gray, M. Pelton, Opt. Express 18, 23633 (2010)

    Article  ADS  Google Scholar 

  52. T. Christensen, A.P. Jauho, M. Wubs, N.A. Mortensen, Phys. Rev. B 91(12), 125414 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ramazan Sahin, Mehmet Emre Tasgin, Asli Gencaslan and Taner Tarik Aytas acknowledge support from TUBITAK-Project No. 121F030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramazan Sahin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gencaslan, A., Aytas, T.T., Asif, H. et al. Silent-enhancement of multiple Raman modes via tuning optical properties of graphene nanostructures. Eur. Phys. J. Plus 137, 1330 (2022). https://doi.org/10.1140/epjp/s13360-022-03560-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03560-3

Navigation