Skip to main content
Log in

Numerical modeling for transient heat transfer of PCM with inclusion of nanomaterial

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

To expedite the process of reaching ice from liquid water, copper oxide nanoparticles have been utilized in this research. Influence of shape of particles on rate of process has been scrutinized. The solidification cannot be influenced by velocity of liquid water; thus, the governing equation is simplified. The final model has two equations, and Galerkin method was selected to simulate the process. The configuration of the mesh depends on the location of the ice front in modeling, and verification tests show a good agreement. With the addition of CuO nanoparticles, the speed of the ice front increases about 26.85%. Considering higher shape factor can lead to faster processes and time reduces about 6.97%. Impact of the shape factor on solidification is less than concentration of nano-powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository [Authors’ comment: No datasets were generated or analyzed during the current study.].

References

  1. V. Chandanam, C.V. Lakshmi, K. Venkatadri et al., Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. Eur. Phys. J. Plus (2021). https://doi.org/10.1140/epjp/s13360-021-01881-3

    Article  Google Scholar 

  2. K. Venkatadri, O.A. Bég, S. Kuharat, Magneto-convective flow through a porous enclosure with Hall current and thermal radiation effects: numerical study. Eur. Phys. J. Spec. Top. 231, 2555–2568 (2022). https://doi.org/10.1140/epjs/s11734-022-00592-9

    Article  Google Scholar 

  3. M. Sheikholeslami, Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles. J. Energy Storage 52, 104954 (2022). https://doi.org/10.1016/j.est.2022.104954

    Article  Google Scholar 

  4. Y. Qin, Numerical modeling of energy storage unit during freezing of paraffin utilizing Al2O3 nanoparticles and Y-shape fin. J. Energy Storage 44, 103452 (2021). https://doi.org/10.1016/j.est.2021.103452

    Article  Google Scholar 

  5. H.A. Othman, H. Rguigui, S.H. Altoum, M.A. Elamin, Nanomaterial efficacy on freezing of PCM with involvement of numerical simulation. J. Mol. Liquids 362, 119658 (2022). https://doi.org/10.1016/j.molliq.2022.119658

    Article  Google Scholar 

  6. M. Sheikholeslami, Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting. Sol. Energy Mater. Sol. Cells 245, 111856 (2022). https://doi.org/10.1016/j.solmat.2022.111856

    Article  Google Scholar 

  7. O. Anwar Bég, K. Venkatadri, V.R. Prasad, Numerical study of magnetohydrodynamic natural convection in a non-Darcian porous enclosure filled with electrically conducting helium gas. Proceed. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236(5), 2203–2223 (2022). https://doi.org/10.1177/09544062211003624

    Article  Google Scholar 

  8. T. Wang, A. Almarashi, Y.A. Al-Turki, N.H. Abu-Hamdeh, M.R. Hajizadeh, Y.M. Chu, Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Mol. Liquids (2020). https://doi.org/10.1016/j.molliq.2020.115052

    Article  Google Scholar 

  9. B. Bai, Y. Wang, D. Rao, F. Bai, The effective thermal conductivity of unsaturated porous media deduced by pore-scale SPH simulation. Front. Earth Sci. (2022). https://doi.org/10.3389/feart.2022.943853

    Article  Google Scholar 

  10. Y.-M. Chu, U. Nazir, M. Sohail, M.M. Selim, J.-R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3), 119 (2021). https://doi.org/10.3390/fractalfract5030119

    Article  Google Scholar 

  11. K. Venkatadri, Radiative magneto-thermogravitational flow in a porous square cavity with viscous heating and hall current effects: a numerical study of ψ-v scheme. Heat Transfer (2022). https://doi.org/10.1002/htj.22619

    Article  Google Scholar 

  12. Y.M. Chu, N.H. Abu-Hamdeh, B. Ben-Beya, M.R. Hajizadeh, Z. Li, Q.V. Bach, Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Mol. Liquids 320, 114457 (2020). https://doi.org/10.1016/j.molliq.2020.114457

    Article  Google Scholar 

  13. H. Sun, N.T. Khalifa, H.A. Saad, H.A. Othman, A.M. Hussin, M.M. Helmi, Investigation of behavior of heat storage system including paraffin with involving MWCNT nanoparticles. J.Energy Storage 54, 105250 (2022). https://doi.org/10.1016/j.est.2022.105250

    Article  Google Scholar 

  14. Y.-M. Chu, S. Bashir, M. Ramzan, M.Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8234

    Article  Google Scholar 

  15. M. Sheikholeslami, Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Sol. Energy Mater. Sol. Cells 243(15), 111786 (2022). https://doi.org/10.1016/j.solmat.2022.111786

    Article  Google Scholar 

  16. Y.M. Chu, M.R. Hajizadeh, Z. Li, Q.V. Bach, Investigation of nano powders influence on melting process within a storage unit. J. Mol. Liquids. 318, 114321 (2020). https://doi.org/10.1016/j.molliq.2020.114321

    Article  Google Scholar 

  17. T.H. Zhao, M. Ijaz Khan, Y.M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7310

    Article  Google Scholar 

  18. M. Sheikholeslami, Z. Said, M. Jafaryar, Hdrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid. Renew. Energy 188, 922–932 (2022). https://doi.org/10.1016/j.renene.2022.02.086

    Article  Google Scholar 

  19. Z. Li, H.A. Othman, A.M. Alzubaidi, H.A. Saad, Y. Zhang, C. Hu, A.S. Alghawli, Heat storage system for air conditioning purpose considering melting in existence of nanoparticles. J. Energy Storage 55, 105408 (2022)

    Article  Google Scholar 

  20. C. Li, T. Jiang, S. Liu, Q. Han, Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates. Aerosp. Sci. Technol. 124, 107513 (2022)

    Article  Google Scholar 

  21. Y.M. Chu, R. Moradi, A.M. Abazari, Q.V. Bach, Effect of non-uniform magnetic field on thermal performance of nanofluid flow in angled junction. Int. J. Mod. Phys. C (2020). https://doi.org/10.1142/S0129183121500017

    Article  Google Scholar 

  22. K. Huang, B. Su, T. Li, H. Ke, M. Lin, Q. Wang, Numerical simulation of the mixing behaviour of hot and cold fluids in the rectangular T-junction with/without an impeller. Appl. Thermal Eng. 204, 117942 (2022). https://doi.org/10.1016/j.applthermaleng.2021.117942

    Article  Google Scholar 

  23. Y.M. Chu, B.M. Shankaralingappa, B.J. Gireesha, F. Alzahrani, M. Ijaz Khan, S.U. Khan, Combined impact of Cattaneo-Christov double diffusion and radiative heat flux on bio-convective flow of Maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 419, 126883 (2022). https://doi.org/10.1016/j.amc.2021.126883

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Qin, Simulation based on Galerkin method for solidification of water through energy storage enclosure. J. Energy Storage 50, 104672 (2022). https://doi.org/10.1016/j.est.2022.104672

    Article  Google Scholar 

  25. M. Sheikholeslami, Z. Ebrahimpour, Thermal improvement of Linear Fresnel Solar system utilizing Al2O3-water nanofluid and multi-way twisted tape. Int. J. Therm. Sci. 176, 107505 (2022). https://doi.org/10.1016/j.ijthermalsci.2022.107505

    Article  Google Scholar 

  26. A.Y.E.D. Hamdi, H.A. Othman, Y. Zhang, G.M. Alzabeedy, A.M. Hussin, T.A. Nofal, Thermal storage evaluation in existence of nano-sized additives by mean of numerical method. J. Energy Storage 55, 105582 (2022). https://doi.org/10.1016/j.est.2022.105582

    Article  Google Scholar 

  27. Y.M. Chu, D. Yadav, A. Shafee, Z. Li, Q.V. Bach, Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mol. Liquids 319, 114121 (2020). https://doi.org/10.1016/j.molliq.2020.114121

    Article  Google Scholar 

  28. H. Chang, Z. Han, X. Li, T. Ma, Q. Wang, Experimental study on heat transfer performance of sCO2 near pseudo-critical point in airfoil-fin PCHE from viewpoint of average thermal-resistance ratio. Int. J. Heat Mass Transf. 196, 123257 (2022). https://doi.org/10.1016/j.ijheatmasstransfer.2022.123257

    Article  Google Scholar 

  29. M. Sheikholeslami, Modeling investigation for energy storage system including mixture of paraffin and ZnO nano-powders considering porous media. J. Petrol. Sci. Eng. 219, 111066 (2022). https://doi.org/10.1016/j.petrol.2022.111066

    Article  Google Scholar 

  30. W. Cui, T. Si, X. Li, X. Li, L. Lu, T. Ma, Q. Wang, Heat transfer analysis of phase change material composited with metal foam-fin hybrid structure in inclination container by numerical simulation and artificial neural network. Energy Rep. 8, 10203–10218 (2022). https://doi.org/10.1016/j.egyr.2022.07.178

    Article  Google Scholar 

  31. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A. Issakhov, Y.-M. Chu, Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116096

    Article  Google Scholar 

  32. I. Jmal, M. Baccar, Numerical study of PCM solidification in a finned tube thermal storage including natural convection. Appl. Therm. Eng. 84, 320–330 (2015)

    Article  Google Scholar 

  33. H. Xu, N. Wang, C. Zhang, Z. Qu, M. Cao, Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit. Appl. Therm. Eng. 176, 115409 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115409

    Article  Google Scholar 

  34. A.O. Elsayed, Numerical investigation on PCM melting in triangular cylinders. Alex. Eng. J. 57(4), 2819–2828 (2018)

    Article  Google Scholar 

  35. O.K. Yagci, M. Avci, O. Aydin, Melting and solidification of PCM in a tube-in-shell unit: Effect of fin edge lengths’ ratio. J. Energy Storage 24, 100802 (2019)

    Article  Google Scholar 

  36. L.-L. Tian, X. Liu, S. Chen, Z.-G. Shen, Effect of fin material on PCM melting in a rectangular enclosure. Appl. Therm. Eng. 167, 114764 (2020)

    Article  Google Scholar 

  37. M. Sheikholeslami, Finite element method for PCM solidification in existence of CuO nanoparticles. J. Mol. Liq. 265, 347–355 (2018). https://doi.org/10.1016/j.molliq.2018.05.132

    Article  Google Scholar 

  38. M. Sheikholeslami, Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J. Taiwan Inst. Chem. Eng. 86, 25–41 (2018)

    Article  Google Scholar 

  39. C. Gau, R. Viskanta, Melting and solidification of a pure metal on a vertical wall. 174–181. (1986)

Download references

Acknowledgements

We appreciate and thank Taif University for the financial support for Taif University Researchers Supporting Project (TURSP-2020/07), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira M. Hussin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, H.A., Hussin, A.M. Numerical modeling for transient heat transfer of PCM with inclusion of nanomaterial. Eur. Phys. J. Plus 137, 1263 (2022). https://doi.org/10.1140/epjp/s13360-022-03467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03467-z

Navigation