Skip to main content

Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic

Abstract

Removal of dyes from wastewater is a challenging task for scientists and environmentalists. This work has studied a mathematical model characterizing the typical staining process within sewage systems. Two widely used nanoparticles, ZnO, and \(TiO_{2}\), are used to remove dyes from wastewater. The BET (Brunauer, Emmett, and Teller) method determines the pore diameter d. The mathematical model of the phenomenon is modeled as a highly nonlinear partial differential equation (HNDE), detailed in a semi-infinite domain. In the present study, a hybridization of the Levenberg-Marquardt Backpropagation and Supervised Neural Network (LMB-SNN) is utilized to find the model’s surrogate solutions. The Runge-Kutta of the order four (RK4) technique is used to create reference solutions. We have analyzed our surrogate solution models by considering eight different scenarios. The stability and equilibrium of the mathematical model are checked by varying physical quantities like the ratio of final pressure to initial pressure. Our candidate solutions are divided into training, testing, and experimental categories to establish the reliability of our machine learning procedure. Comparative studies of statistical values based on mean squared error function (MSEF), effectiveness, regression plots, and failure histograms confirm the efficiency of the (LMB-SNN) scheme.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All surrogate models are included in Figures 10, 11, 12, and 13. These models can be used for the reproduction of our results. No further data is associated with these models. For further queries, interested readers may contact the corresponding author for elaborations.]

References

  1. R. Kidder, Unsteady flow of gas through a semi-infinite porous medium. 1957

  2. T. NA, Computational methods in engineering boundary value problems(Book). New York, Academic Press, Inc.(Mathematics in Science and Engineering. 1979, 145

  3. E. Sternberg, Proceedings of the First US National Congress of Applied Mechanics: Held at Illinois Institute of Technology, Chicago, Illinois, June 11-16, 1951; American Society of mechanical engineers, (1952)

  4. N.A. Khan, T. Hameed, An implementation of Haar wavelet based method for numerical treatment of time-fractional Schrödinger and coupled Schrödinger systems. IEEE/CAA J Automatica Sin 6, 177–187 (2016)

    Article  Google Scholar 

  5. K.N. Alam, T. Hameed, M. Ayaz, R.O. Abdul, The reaction dimerization: A resourceful slant applied on the fractional partial differential equation. Thermal Science 23, 2095–2105 (2019)

    Article  Google Scholar 

  6. R. Fazio, A. Jannelli, Two finite difference methods for a nonlinear BVP arising in physical oceanography. Atti della Accad Pelorit dei Pericolanti-Classe di Sci Fisiche, Matemat Nat 96, 3 (2018)

    MathSciNet  Google Scholar 

  7. K. Parand, M. Hemami, Numerical study of astrophysics equations by meshless collocation method based on compactly supported radial basis function. Int. J.Applied. Comput.MatH. 3, 1053–1075 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Hagstrom, H. Keller, Asymptotic boundary conditions and numerical methods for nonlinear elliptic problems on unbounded domains. Math. Comput. 48, 449–470 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. F.R. de Hoog, R. Weiss, An approximation theory for boundary value problems on infinite intervals. Computing 24, 227–239 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Lentini, H.B. Keller, Boundary value problems on semi-infinite intervals and their numerical solution. SIAM J. Numer. Anal. 17, 577–604 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. P.A. Markowich, A theory for the approximation of solutions of boundary value problems on infinite intervals. SIAM J. Math. Anal. 13, 484–513 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. P.A. Markowich, Analysis of boundary value problems on infinite intervals. SIAM J. Math. Anal. 14, 11–37 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Givoli, Numerical methods for problems in infinite domains (Elsevier, New York, 2013)

    MATH  Google Scholar 

  14. S.V. Tsynkov, Numerical solution of problems on unbounded domains. Rev. Appl. Numer. Math. 27, 465–532 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. X. Wu, Z.Z. Sun, Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions. Appl. numer. math. 50, 261–277 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. R.P. Agarwal, D. O’Regan, Non-linear boundary value problems on the semi-infinite interval: an upper and lower solution approach. Mathematika 49, 129–140 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Alshin, E. Alshina, Kalitkin, N. Application of quasi-uniform grids for numerical solution of initial-boundary value problems in unbounded domain. In EQUADIFF 2003; World Scientific, pp. 1024–1026 (2005)

  18. Z. Sabir, A. Ayub, J.L. Guirao, S. Bhatti, S.Z.H. Shah, The effects of activation energy and thermophoretic diffusion of nanoparticles on steady micropolar fluid along with Brownian motion. Adv. Mater. Sci. Eng. 2020, 78–98 (2020)

    Article  Google Scholar 

  19. G. Zhirong, D.M. Alghazzawi, Optimal solution of fractional differential equations in solving the relief of college students’ mental obstacles. Appl. Math. Nonl. Sci. 5, 75–102 (2021)

    Google Scholar 

  20. P. Wan, A.M.H. Arbad, Law of interest rate changes in financial markets based on the differential equation model of liquidity. Applied Mathematics and Nonlinear Sciences (2021)

  21. Q. Chen, H.M. Baskonus, W. Gao, E. Ilhan, Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy. Alex. Eng. J. 61, 7843–7851 (2022)

    Article  Google Scholar 

  22. Y. Shao, A.J. Abualhamayl, Differential equation to verify the validity of the model of the whole-person mental health education activity in Universities. Applied Mathematics and Nonlinear Sciences (2021)

  23. L. Xu, M. Aouad, Application of Lane-Emden differential equation numerical method in fair value analysis of financial accounting. Applied Mathematics and Nonlinear Sciences (2021)

  24. A. Ciancio, G. Yel, A. Kumar, H.M. Baskonus, E. İlhan, On the complex mixed dark-bright wave distributions to some conformable nonlinear integrable models. Fractals 30, 2240018 (2022)

    Article  ADS  MATH  Google Scholar 

  25. Y. Qin, M. Basheri, R.E. Omer, Energy-saving technology of BIM green buildings using fractional differential equation. Applied Mathematics and Nonlinear Sciences (2021)

  26. Z. Abo-Hammour, O.A. Arqub, O. Alsmadi, S. Momani, A. Alsaedi, An optimization algorithm for solving systems of singular boundary value problems. Appl. Math. Informat. Sci. 8, 2809 (2014)

    Article  MathSciNet  Google Scholar 

  27. W. Gao, H.M. Baskonus, Deeper investigation of modified epidemiological computer virus model containing the Caputo operator. Chaos, Solitons & Fractals 158, 112050 (2022)

    Article  MathSciNet  Google Scholar 

  28. A. Muhammad, W.M. KHAN, Ö. YENİAY, M.A. Jan, N. TAİRAN, Hussian, H.; Wang, G.G. Hybrid genetic algorithms for global optimization problems. Hacettepe Journal of Mathematics and Statistics, 47, 539–551 (2018)

  29. W.K. Mashwani, A. Salhi, O. Yeniay, H. Hussian, M.A. Jan, Hybrid non-dominated sorting genetic algorithm with adaptive operators selection. Appl. Soft Comput. 56, 1–18 (2017)

    Article  Google Scholar 

  30. W.K. Mashwani, A. Salhi, O. Yeniay, M.A. Jan, R.A. Khanum, Hybrid adaptive evolutionary algorithm based on decomposition. Appl. Soft Comput. 57, 363–378 (2017)

    Article  Google Scholar 

  31. J.A. Khan, M.A.Z. Raja, M.I. Syam, S.A.K. Tanoli, S.E. Awan, Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. Neural Comput. Appl. 26, 1763–1780 (2015)

    Article  Google Scholar 

  32. O.A. Arqub, Z. Abo-Hammour, Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Informat. sci. 279, 396–415 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Mall, S. Chakraverty, Chebyshev neural network based model for solving Lane-Emden type equations. Appl. Math. Comput. 247, 100–114 (2014)

    MathSciNet  MATH  Google Scholar 

  34. S. Mall, S. Chakraverty, Numerical solution of nonlinear singular initial value problems of Emden-Fowler type using Chebyshev Neural Network method. Neurocomputing 149, 975–982 (2015)

    Article  Google Scholar 

  35. S. Momani, Z.S. Abo-Hammour, O.M. Alsmadi, Solution of inverse kinematics problem using genetic algorithms. Appl. Math. & Informat. Sci. 10, 225 (2016)

    Article  Google Scholar 

  36. M.A.Z. Raja, J.A. Khan, S.M. Shah, R. Samar, D. Behloul, Comparison of three unsupervised neural network models for first Painlevé Transcendent. Neural Comput. Appl. 26, 1055–1071 (2015)

    Article  Google Scholar 

  37. M.A.Z. Raja, J.A. Khan, A.M. Siddiqui, D. Behloul, T. Haroon, R. Samar, Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl. Soft Comput. 26, 244–256 (2015)

    Article  Google Scholar 

  38. Z. Abo-Hammour, A. Samhouri, Y. Mubarak, Continuous genetic algorithm as a novel solver for Stokes and nonlinear Navier Stokes problems. Math. Probl. Eng. 2014, 137–145 (2014)

    Article  Google Scholar 

  39. M.A.Z. Raja, Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl. Soft Comput. 24, 806–821 (2014)

    Article  Google Scholar 

  40. I. Ahmad, A. Mukhtar, Stochastic approach for the solution of multi-pantograph differential equation arising in cell-growth model. Appl. Math. Comput. 261, 360–372 (2015)

    MathSciNet  MATH  Google Scholar 

  41. M.A.Z. Raja, J.A. Khan, T. Haroon, Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiwan Instit. Chem. Eng. 48, 26–39 (2015)

    Article  Google Scholar 

  42. M.A.Z. Raja, F.H. Shah, A.A. Khan, N.A. Khan, Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson-Segalman fluid on vertical cylinder for drainage problems. J. Taiwan Instit. Chem. Eng. 60, 59–75 (2016)

    Article  Google Scholar 

  43. M.A.Z. Raja, U. Farooq, N.I. Chaudhary, A.M. Wazwaz, Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl. Soft Comput. 38, 561–586 (2016)

    Article  Google Scholar 

  44. M.A.Z. Raja, Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect. Sci. 26, 195–214 (2014)

    Article  ADS  Google Scholar 

  45. N.A. Khan, M. Sulaiman, C.A. Tavera Romero, F.K. Alarfaj, Theoretical Analysis on Absorption of Carbon Dioxide (CO2) into Solutions of Phenyl Glycidyl Ether (PGE) Using Nonlinear Autoregressive Exogenous Neural Networks. Molecules , 26: 6041 (2021)

  46. A. Ahmad, M. Sulaiman, A. Alhindi, A.J. Aljohani, Analysis of temperature profiles in longitudinal fin designs by a novel neuroevolutionary approach. IEEE Access 8, 113285–113308 (2020)

    Article  Google Scholar 

  47. N.A. Khan, F.S. Alshammari, C.A.T. Romero, M. Sulaiman, S. Mirjalili, An Optimistic Solver for the Mathematical Model of the Flow of Johnson Segalman Fluid on the Surface of an Infinitely Long Vertical Cylinder. Materials 14, 7798 (2021)

    Article  ADS  Google Scholar 

  48. D. Tanasa, N. Vrinceanu, A. Nistor, C.M. Hristodor, E. Popovici, I.L. Bistricianu, F. Brinza, D.L. Chicet, D. Coman, A. Pui, others. Zinc oxide-linen fibrous composites: morphological, structural, chemical and humidity adsorptive attributes. Textile Res. J. 82: 832–844 (2012)

  49. F.J. Valdes-Parada, J.A. Ochoa-Tapia, J. Alvarez-Ramirez, Validity of the permeability Carman-Kozeny equation: A volume averaging approach. Phys. A: Statist. Mech. Appl. 388, 789–798 (2009)

    Article  ADS  Google Scholar 

  50. H.T. Davis, Introduction to nonlinear differential and integral equations (US Atomic Energy Commission, Maryland, 1960)

    Google Scholar 

  51. S.E. Awan, M.A.Z. Raja, A. Mehmood, S.A. Niazi, S. Siddiqa, Numerical treatments to analyze the nonlinear radiative heat transfer in MHD nanofluid flow with solar energy. Arabian J. Sci. Eng. 45, 4975–4994 (2020)

    Article  Google Scholar 

  52. S.E. Awan, M.A.Z. Raja, F. Gul, Z.A. Khan, A. Mehmood, M. Shoaib, Numerical computing paradigm for investigation of micropolar nanofluid flow between parallel plates system with impact of electrical MHD and Hall current. Arabian J. Sci. Eng. 46, 645–662 (2021)

    Article  Google Scholar 

  53. S.E. Awan, M. Awais, S.U. Rehman, S.A. Niazi, M.A. Zahoor Raja, Dynamical analysis for nanofluid slip rheology with thermal radiation, heat generation/absorption and convective wall properties. AIP Advances. 8: 075122 (2018)

  54. M.M. Shora, H. Ghassemi, H. Nowruzi, Using computational fluid dynamic and artificial neural networks to predict the performance and cavitation volume of a propeller under different geometrical and physical characteristics. J. Marine Eng. & Technol. 17, 59–84 (2018)

    Article  Google Scholar 

  55. Y.M. Chu, R. Ali, M.I. Asjad, A. Ahmadian, N. Senu, Heat transfer flow of Maxwell hybrid nanofluids due to pressure gradient into rectangular region. Scient. Rep. 10, 1–18 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Sulaiman or Fahad Sameer Alshammari.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamal, M., Sulaiman, M. & Alshammari, F.S. Quantitative features analysis of a model for separation of dissolved substances from a fluid flow by using a hybrid heuristic. Eur. Phys. J. Plus 137, 1062 (2022). https://doi.org/10.1140/epjp/s13360-022-03226-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03226-0