Skip to main content
Log in

Analysis, prediction, and optimization of heat transfer coefficient and friction factor of water-\({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\) nanofluid flow in shell-and-tube heat exchanger with helical baffles (using RSM)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The influence of the tube pass ratio employed, the twisted helical baffle, and Al2O 3-water nanofluid as the base fluid is investigated in this study by computational analysis. When they add Al2O3, the heat transfer in the shell-and-tube heat exchangers (STHX) increases. Three parameters are chosen for optimization in this research. The heat transfer coefficient activities and the friction factor of a heat exchanger shell are studied in this way. The tube pass ratio (PR), the baffles space ratio (BS), and the Reynolds number are all examined. Reynolds number (Re) has the greatest influence on enhancing heat transfer among the studied factors, followed by tube PR and BS. The findings suggest that increasing the Re and Tube PR while reducing the baffle BS boosted heat transfer while raising the Re decreases the friction factor. Apart from having a direct influence on the efficiency of the STHX, each of the parameters has an interaction effect on the others. More heat transfer is recorded at the greatest Re, the highest value of the tube PR, and the lowest value of the BS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Kazemi, L. Shiri, Ionic liquid immobilized on magnetic nanoparticles: a nice and efficient catalytic strategy in synthesis of heterocycles. J. Synth. Chem. 1(1), 1–7 (2022). https://doi.org/10.22034/jsc.2022.149201

    Article  Google Scholar 

  2. S. Gupta, Magnetic nanoparticles supported sulfuric acid as a green and efficient nanocatalyst for oxidation of sulfides and oxidative coupling of thiols. J. Synth. Chem. 1(1), 16–21 (2022). https://doi.org/10.22034/jsc.2022.149217

    Article  Google Scholar 

  3. M. Farahmandjou, A. Khodadadi, M. Yaghoubi, Synthesis and characterization of Fe-Al2O3 nanoparticles prepared by coprecipitation method. Iran. J. Chem. Chem. Eng. (IJCCE) 40(3), 725–730 (2021). https://doi.org/10.30492/ijcce.2020.38036

    Article  Google Scholar 

  4. R. Zahmatkesh, H. Mohammadiun, M. Mohammadiun, M. Dibaei Bonab, M. Sadi, Theoretical investigation of entropy generation in axisymmetric stagnation point flow of nanofluid impinging on the cylinder axes with constant wall heat flux and uniform transpiration. Iran. J. Chem. Chem. Eng. (IJCCE) 40(6), 1893–1908 (2021)

    Google Scholar 

  5. M.S. Turgut, O.E. Turgut, Eagle strategy based on modified barnacles mating optimization and differential evolution algorithms for solving transient heat conduction problems. Int. J. Intell. Syst. Appl. Eng. 9(3), 121–135 (2021)

    Article  Google Scholar 

  6. S. Kaur, D.R. Bedi, M. Marwaha, Optimization of energy efficient advance leach protocol. Int. J. Recent Innov. Trends Comput. Commun. 9(5), 07–16 (2021). https://doi.org/10.17762/ijritcc.v9i5.5472

    Article  Google Scholar 

  7. A. Tiwary, Advanced and innovative optimization techniques in controllers: a comprehensive review. Int. J. Recent Innov. Trends Comput. Commun. 9(3), 23–27 (2021)

    Article  Google Scholar 

  8. R.S. Srinivasareddy, Y.V. Narayana, D.R.D. Krishna, Sector beam synthesis in linear antenna arrays using social group optimization algorithm. Natl. J. Antennas Propag. 3(2), 6–9 (2021)

    Google Scholar 

  9. S. Rakshe, S.V. Nimje, S.K. Panigrahi, Optimization of adhesively bonded spar-wingskin joints of laminated FRP composites subjected to pull-off load: a critical review. Rev. Adhes. Adhes. 8(1), 29–46 (2021)

    Article  Google Scholar 

  10. L. Zhang, J. Li, J. Xue, C. Zhang, X. Fang, Experimental studies on the changing characteristics of the gas flow capacity on bituminous coal in CO2-ECBM and N-2-ECBM. Fuel (Guildford) 291, 120115 (2021). https://doi.org/10.1016/j.fuel.2020.120115

    Article  Google Scholar 

  11. Z. Guo, J. Yang, Z. Tan, X. Tian, Q. Wang, Numerical study on gravity-driven granular flow around tube out-wall: effect of tube inclination on the heat transfer. Int. J. Heat Mass Transf. 174, 121296 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121296

    Article  Google Scholar 

  12. A. Athiyaman, T. Magapa, Market intelligence from the internet: an illustration using the biomass heating industry. Int. J. Econ. Finance Stud. 11(1), 1–16 (2019)

    Article  Google Scholar 

  13. M. Mozafarifard, D. Toghraie, Time-fractional subdiffusion model for thin metal films under femtosecond laser pulses based on Caputo fractional derivative to examine anomalous diffusion process. Int. J. Heat Mass Transf. 153, 119592 (2020)

    Article  Google Scholar 

  14. M. Turkyilmazoglu, MHD natural convection in saturated porous media with heat generation/absorption and thermal radiation: closed-form solutions. Arch. Mech. 71(1) (2019).

  15. A.A. Siddiqui, M. Turkyilmazoglu, Natural convection in the ferrofluid enclosed in a porous and permeable cavity. Int. Commun. Heat Mass Transf. 113, 104499 (2020)

    Article  Google Scholar 

  16. A. Asgharpour, E. Hajidavalloo, M. Taheri, Experimental and analytical investigation of transient behavior of coupled heat exchangers. Appl. Therm. Eng. 60(1–2), 172–181 (2013)

    Article  Google Scholar 

  17. B.I. Master, K.S. Chunangad, A.J. Boxma, D. Kral, P. Stehlik, Most frequently used heat exchangers from pioneering research to worldwide applications. Heat Transf. Eng. 27(6), 4–11 (2006)

    Article  ADS  Google Scholar 

  18. V. Pandiyarajan, M.C. Pandian, E. Malan, R. Velraj, R.V. Seeniraj, Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system. Appl. Energy 88(1), 77–87 (2011)

    Article  Google Scholar 

  19. K.J. Bell, Heat exchanger design for the process industries. J. Heat Transf. 126(6), 877–885 (2004)

    Article  Google Scholar 

  20. H. Li, V. Kottke, Effect of baffle spacing on pressure drop and local heat transfer in shell-and-tube heat exchangers for staggered tube arrangement. Int. J. Heat Mass Transf. 41(10), 1303–1311 (1998)

    Article  Google Scholar 

  21. A. Youcef et al., Numerical analysis of the baffles inclination on fluid behavior in a shell and tube heat exchanger. J. Appl. Comput. Mech. 7(1), 312–320 (2021)

    MathSciNet  Google Scholar 

  22. Y. Liu, J. Wen, S. Wang, J. Tu, Numerical investigation on the shell and tube heat exchanger with baffle leakage zones blocked. Int. J. Therm. Sci. 165, 106959 (2021)

    Article  Google Scholar 

  23. J. Jiang, L. Bo, Z. Chen, H. Cui, H. Zhu, Numerical simulation and analysis of enhanced heat transfer in corrugated tube heat exchanger. IOP Conf. Ser. Earth Environ. Sci. 467(1), 12031 (2020)

    Article  Google Scholar 

  24. P. Stehlik, J. Němčansky, D. Kral, L.W. Swanson, Comparison of correction factors for shell-and-tube heat exchangers with segmental or helical baffles. Heat Transf. Eng. 15(1), 55–65 (1994)

    Article  ADS  Google Scholar 

  25. J. Lutcha and J. Nemcansky, Performance improvement of tubular heat exchangers by helical baffles. Chem. Eng. Res. Des. 68(A3) (1990)

  26. Y. Cao, H. Ke, J.J. Klemeš, M. Zeng, Q. Wang, Comparison of aerodynamic noise and heat transfer for shell-and-tube heat exchangers with continuous helical and segmental baffles. Appl. Therm. Eng. 185, 116341 (2021)

    Article  Google Scholar 

  27. R. Kunwer, S. Pandey, S.S. Bhurat, Comparison of selected shell and tube heat exchangers with segmental and helical baffles. Therm. Sci. Eng. Prog. 20, 100712 (2020)

    Article  Google Scholar 

  28. F.N. Taher, S.Z. Movassag, K. Razmi, R.T. Azar, Baffle space impact on the performance of helical baffle shell and tube heat exchangers. Appl. Therm. Eng. 44, 143–149 (2012)

    Article  Google Scholar 

  29. M. Turkyilmazoglu, On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus 136(4), 1–15 (2021)

    Article  Google Scholar 

  30. R. Amini, M. Amini, A. Jafarinia, M. Kashfi, Numerical investigation on effects of using segmented and helical tube fins on thermal performance and efficiency of a shell and tube heat exchanger. Appl. Therm. Eng. 138, 750–760 (2018)

    Article  Google Scholar 

  31. M. Vivekanandan, R. Venkatesh, R. Periyasamy, S. Mohankumar, L. Devakumar, Experimental and CFD investigation of helical coil heat exchanger with flower baffle. Mater. Today Proc. 37, 2174–2182 (2021)

    Article  Google Scholar 

  32. Q.-W. Wang, G.-D. Chen, J. Xu, and Y.-P. Ji, “Second-law thermodynamic comparison and maximal velocity ratio design of shell-and-tube heat exchangers with continuous helical baffles (2010).

  33. D.S. Toghraie, N. Sina, M. Mozafarifard, A. Alizadeh, F. Soltani, and M. A. Fazilati, “Prediction of dynamic viscosity of a new non-Newtonian hybrid nanofluid using experimental and artificial neural network (ANN) methods. Heat Transf. Res., 51(15) (2020).

  34. M. Turkyilmazoglu, Exact solutions concerning momentum and thermal fields induced by a long circular cylinder. Eur. Phys. J. Plus 136(5), 1–10 (2021)

    Article  Google Scholar 

  35. M.R. Saffarian, M. Moravej, M.H. Doranehgard, Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid. Renew. Energy 146, 2316–2329 (2020)

    Article  Google Scholar 

  36. A.R. Rahmati, M. Derikvand, Numerical study of non-Newtonian nano-fluid in a micro-channel with adding slip velocity and porous blocks. Int. Commun. Heat Mass Transf. 118, 104843 (2020)

    Article  Google Scholar 

  37. M. Aliakbari, Numerical investigation of heat transfer of nanofluids in a channel under the influence of porous area. J. Fundam. Appl. Sci. 9, 1175–1188 (2017)

    Google Scholar 

  38. K. Hosseinzadeh, A.R. Mogharrebi, A. Asadi, M. Sheikhshahrokhdehkordi, S. Mousavisani, and D.D. Ganji, “Entropy generation analysis of mixture nanofluid (H2O/C2H6O2)--Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation.” Int. J. Ambient Energy, pp. 1–13 (2019).

  39. M. Bahiraei, M. Naseri, A. Monavari, A CFD study on thermohydraulic characteristics of a nanofluid in a shell-and-tube heat exchanger fitted with new unilateral ladder type helical baffles. Int. Commun. Heat Mass Transf. 124, 105248 (2021)

    Article  Google Scholar 

  40. K. Yu, C. Park, S. Kim, H. Song, H. Jeong, CFD analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe. J. Phys Conf. Ser. 885(1), 12021 (2017)

    Article  Google Scholar 

  41. H. Souzangarzadeh, A. Jahan, M.J. Rezvani, A.S. Milani, Multi-objective optimization of cylindrical segmented tubes as energy absorbers under oblique crushes: D-optimal design and integration of MULTIMOORA with combinative weighting. Struct. Multidiscip. Optim. 62(1), 249–268 (2020)

    Article  Google Scholar 

  42. V. Khalajzadeh, G. Heidarinejad, J. Srebric, Parameters optimization of a vertical ground heat exchanger based on response surface methodology. Energy Build. 43(6), 1288–1294 (2011)

    Article  Google Scholar 

  43. D. Thondiyil and S.K. Kodakkattu, “Optimization of a shell and tube heat exchanger with staggered baffles using Taguchi method.” Mater. Today Proc. (2021).

  44. P. Deuflhard, A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22(4), 289–315 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  45. T.-H. Shih, J. Zhu, J.L. Lumley, A new Reynolds stress algebraic equation model. Comput. Methods Appl. Mech. Eng. 125(1–4), 287–302 (1995)

    Article  ADS  Google Scholar 

  46. E. Ozden, I. Tari, Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Convers. Manag. 51(5), 1004–1014 (2010)

    Article  Google Scholar 

  47. M. Sheikholeslami, M. Jafaryar, A. Shafee, Z. Li, R. Haq, Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int. J. Heat Mass Transf. 136, 1233–1240 (2019)

    Article  Google Scholar 

  48. A.P. Sasmito, J.C. Kurnia, A.S. Mujumdar, Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes. Nanoscale Res. Lett. 6(1), 1–14 (2011)

    Article  Google Scholar 

  49. D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids, vol. 135 (Springer, Berlin, 2006)

    MATH  Google Scholar 

  50. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1 (Clarendon Press, Oxford, 1873)

    MATH  Google Scholar 

  51. M. Mellal, R. Benzeguir, D. Sahel, H. Ameur, Hydro-thermal shell-side performance evaluation of a shell and tube heat exchanger under different baffle arrangement and orientation. Int. J. Therm. Sci. 121, 138–149 (2017)

    Article  Google Scholar 

  52. A.H. Pordanjani, S.M. Vahedi, S. Aghakhani, M. Afrand, O. Mahian, L.-P. Wang, Multivariate optimization and sensitivity analyses of relevant parameters on efficiency of scraped surface heat exchanger. Appl. Therm. Eng. 178, 115445 (2020)

    Article  Google Scholar 

  53. S.M. Vahedi, A.Z. Ghadi, M.S. Valipour, Application of response surface methodology in the optimization of magneto-hydrodynamic flow around and through a porous circular cylinder. J. Mech. 34(5), 695–710 (2018)

    Article  Google Scholar 

  54. A.H. Pordanjani, S.M. Vahedi, F. Rikhtegar, S. Wongwises, Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J. Therm. Anal. Calorim. 135(2), 1031–1045 (2019)

    Article  Google Scholar 

  55. N. Aslan, Application of response surface methodology and central composite rotatable design for modeling the influence of some operating variables of a Multi-Gravity Separator for coal cleaning. Fuel 86(5–6), 769–776 (2007)

    Article  Google Scholar 

  56. K. Yu, P. Cheol, K. Sedon, H. Song, and H. Jeong, CFD analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe. in Journal of Physics: Conference Series, vol. 885, no. 1, p. 012021. IOP Publishing, (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifat, F., Marchitto, A., Solari, M.S. et al. Analysis, prediction, and optimization of heat transfer coefficient and friction factor of water-\({\mathrm{Al}}_{2}{\mathrm{O}}_{3}\) nanofluid flow in shell-and-tube heat exchanger with helical baffles (using RSM). Eur. Phys. J. Plus 137, 991 (2022). https://doi.org/10.1140/epjp/s13360-022-03210-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03210-8

Navigation