Skip to main content
Log in

Modeling wind effect and herd behavior in a predator–prey system with spatiotemporal dynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we unveiled some important aspects of a predator–prey system in a windy environment considering the herd geometry of prey species by constructing a mathematical model of the proposed system under consideration. As the first of the study, we have shown the positivity and boundedness property of the solutions of the modified new system. Analytical and numerical experiments exhibit the dependence of equilibrium biomass on the strength of wind and geometry of the herd shape. The existence of trans-critical and Hopf bifurcation has been observed for a smooth change in the windy environment. Sensitivity analysis has been carried out to explore the significant parameters that affect the predator population density. Moreover, we have studied the spatially extended system with a windy environment and herd behavior. The existence of Hopf bifurcation is proved in the system, theoretically and numerically. Turing patterns are not possible in the system; however, interesting non-Turing patterns are obtained for different herd behaviors in a windy environment. The resulting non-Turing patterns are irregular patchy chaotic patterns as corresponding chaotic spatial attractors obtained in the spatially extended system. Hence, the spatially extended system exhibits interesting spatiotemporal dynamics with a windy environment and herd behavior. These dynamics help better understand predator–prey interactions in a real environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data Availibility Statement

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. C.S. Holling, Some characteristics of simple types of predation and parasitism1. Can. Entomol. 91(7), 385–398 (1959)

    Article  Google Scholar 

  2. J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment. Biosystems 197, 104176 (2020)

    Article  Google Scholar 

  3. J. Roy, S. Alam, Study on autonomous and nonautonomous version of a food chain model with intraspecific competition in top predator. Math. Methods Appl. Sci. 43(6), 3167–3184 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D. Barman, J. Roy, S. Alam, Impact of wind in the dynamics of prey-predator interactions. Math. Comput. Simul. 191, 49–81 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Barman, J. Roy, S. Alam, Modelling hiding behaviour in a predator-prey system by both integer order and fractional order derivatives. Ecol. Inform. 67, 101483 (2022)

    Article  Google Scholar 

  6. V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems. Nonlinear Anal. Real World Appl. 12(4), 2319–2338 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. A.R. Hayes, N.J. Huntly, Effects of wind on the behavior and call transmission of pikas (Ochotona princeps). J. Mammal. 86(5), 974–981 (2005)

    Article  Google Scholar 

  8. P.G.C. Jakosalem, N.J. Collar, J.A. Gill, Habitat selection and conservation status of the endemic Ninox hawk-owl on Cebu, Philippines. Bird Conserv. Int. 23(3), 360–370 (2013)

    Article  Google Scholar 

  9. E. Klimczuk, L. Halupka, B. Czyż, M. Borowiec, J.J. Nowakowski, H. Sztwiertnia, Factors driving variation in biparental incubation behaviour in the reed warbler Acrocephalus scirpaceus. Ardea 103(1), 51–59 (2015)

    Article  Google Scholar 

  10. P. Stander, S. Albon, Hunting success of lions in a semi-arid environment, in: Symposia of the Zoological Society of London, Vol. 65, pp. 127–143 (1993)

  11. M. McBlain, K. Jones, G. Shannon, Sleeping Eurasian oystercatchers adjust their vigilance in response to the behaviour of neighbours, human disturbance and environmental conditions. J. Zool. 312(2), 75–84 (2020)

    Article  Google Scholar 

  12. M. Cherry, B. Barton, Effects of wind on predator-prey interactions. Food Webs 13, 92–97 (2017)

    Article  Google Scholar 

  13. Y.-H. Law, A. Sediqi, Sticky substance on eggs improves predation success and substrate adhesion in newly hatched Zelus renardii (Hemiptera: Reduviidae) instars. Ann. Entomol. Soc. Am. 103(5), 771–774 (2010)

    Article  Google Scholar 

  14. J. Turner, F. Vollrath, T. Hesselberg, Wind speed affects prey-catching behaviour in an orb web spider. Naturwissenschaften 98(12), 1063–1067 (2011)

    Article  ADS  Google Scholar 

  15. J. Yasuoka, R. Levins, Ecology of vector mosquitoes in Sri Lanka-suggestions for future mosquito control in rice ecosystems. Southeast Asian J. Tropic. Med. Publ. Health 38(4), 646 (2007)

    Google Scholar 

  16. L.A. Calcaterra, S.D. Porter, J.A. Briano, Distribution and abundance of fire ant decapitating flies (Diptera: Phoridae: Pseudacteon) in three regions of southern South America. Ann. Entomol. Soc. Am. 98(1), 85–95 (2005)

    Article  Google Scholar 

  17. P.J. Van Soest, Allometry and ecology of feeding behavior and digestive capacity in herbivores: a review. Zoo Biol. Publ. Affil. Am. Zoo Aquar. Assoc. 15(5), 455–479 (1996)

    Google Scholar 

  18. A.L. Thomas, G.K. Taylor, Animal flight dynamics i. stability in gliding flight. J. Theor. Biol. 212(3), 399–424 (2001)

    Article  ADS  Google Scholar 

  19. A.B. Medvinsky, S.V. Petrovskii, I.A. Tikhonova, H. Malchow, B.-L. Li, Spatiotemporal complexity of plankton and fish dynamics. SIAM Rev. 44(3), 311–370 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. K. Steinmüller, a. Okubo, Diffusion and ecological problems: Mathematical models.(biomathematics, vol. 10.) Springer-Verlag, Berlin-Heidelberg-New York 1980, 254 pp., 114 figs., 6 tab., dm 78.- (1982)

  21. A. Okubo, S.A. Levin, The basics of diffusion, in Diffusion and Ecological Problems: Modern Perspectives. (Springer, Berlin, 2001), pp.10–30

    Chapter  MATH  Google Scholar 

  22. H. Malchow, Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, and Simulation (Chapman and Hall/CRC, Boca Raton, 2007)

    Book  Google Scholar 

  23. A.M. Turing, The chemical basis of morphogenesis. Bull. Math. Biol. 52(1), 153–197 (1990)

    Article  Google Scholar 

  24. L.A. Segel, J.L. Jackson, Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37(3), 545–559 (1972)

    Article  ADS  Google Scholar 

  25. B. Dubey, N. Kumari, R.K. Upadhyay, Spatiotemporal pattern formation in a diffusive predator-prey system: an analytical approach. J. Appl. Math. Comput. 31(1), 413–432 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Banerjee, S. Banerjee, Turing instabilities and spatio-temporal chaos in ratio-dependent Holling-Tanner model. Math. Biosci. 236(1), 64–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Kumari, Pattern formation in spatially extended tritrophic food chain model systems: generalist versus specialist top predator, International Scholarly Research Notices 2013 (2013)

  28. R.D. Parshad, N. Kumari, A.R. Kasimov, H.A. Abderrahmane, Turing patterns and long-time behavior in a three-species food-chain model. Math. Biosci. 254, 83–102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Banerjee, Turing and non-Turing patterns in two-dimensional prey-predator models, in: Applications of Chaos and Nonlinear Dynamics in Science and Engineering-Vol. 4, Springer, pp. 257–280 (2015)

  30. V. Kumar, N. Kumari, Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response. Chaos Solitons Fractals 147, 110964 (2021)

    Article  MathSciNet  Google Scholar 

  31. S. Batabyal, D. Jana, R.D. Parshad, A.A. Basheer, R.K. Upadhyay, Pattern formation in an explosive food chain model: the case of apparent mutualism. Eur. Phys. J. Plus 136(4), 1–28 (2021)

    Article  Google Scholar 

  32. D. Jana, S. Batabyal, M. Lakshmanan, Self-diffusion-driven pattern formation in prey-predator system with complex habitat under fear effect. Eur. Phys. J. Plus 135(11), 1–42 (2020)

    Article  Google Scholar 

  33. Y. Liu, X. Tao, Z. Zhang, L. Zhu, A study of the Turing pattern formation in a predator-prey model based on network and non-network environments. Eur. Phys. J. Plus 137(6), 691 (2022)

    Article  Google Scholar 

  34. B.T. Mbopda, S. Issa, S. Abdoulkary, R. Guiem, H. Fouda, Pattern formations in nonlinear dynamics of hepatitis b virus. Eur. Phys. J. Plus 136(5), 1–15 (2021)

    Article  Google Scholar 

  35. N. Kumari, V. Kumar, Controlling chaos and pattern formation study in a tritrophic food chain model with cannibalistic intermediate predator. Eur. Phys. J. Plus 137(3), 1–23 (2022)

    Google Scholar 

  36. V. Kumar, N. Kumari, Pattern formation study of Hassell-Varley prey-predator system with fear effect, in: AIP Conference Proceedings, Vol. 2435, AIP Publishing LLC, p. 020053 (2022)

  37. R. Peng, J. Shi, M. Wang, Stationary pattern of a ratio-dependent food chain model with diffusion. SIAM J. Appl. Math. 67(5), 1479–1503 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Huang, H. Zhang, X. Cong, G. Pan, X. Zhang, Z. Liu, Exploring spatiotemporal complexity of a predator-prey system with migration and diffusion by a three-chain coupled map lattice, Complexity 2019 (2019)

  39. M. Banerjee, L. Zhang, Time delay can enhance spatio-temporal chaos in a prey-predator model. Ecol. Complex. 27, 17–28 (2016)

    Article  Google Scholar 

  40. M. Banerjee, S. Petrovskii, Self-organised spatial patterns and chaos in a ratio-dependent predator-prey system. Theor. Ecol. 4(1), 37–53 (2011)

    Article  Google Scholar 

  41. M. Banerjee, Self-replication of spatial patterns in a ratio-dependent predator-prey model. Math. Comput. Modell. 51(1–2), 44–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. W. Wang, Q.-X. Liu, Z. Jin, Spatiotemporal complexity of a ratio-dependent predator-prey system. Phys. Rev. E 75(5), 051913 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Yuan, C. Xu, T. Zhang, Spatial dynamics in a predator-prey model with herd behavior. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Y. Song, X. Tang, Stability, steady-state bifurcations, and Turing patterns in a predator-prey model with herd behavior and prey-taxis. Stud. Appl. Math. 139(3), 371–404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Singh, S. Banerjee, Spatiotemporal model of a predator-prey system with herd behavior and quadratic mortality. Int. J. Bifurc. Chaos 29(04), 1950049 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition. Math. Methods Appl. Sci. 43(5), 2233–2250 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. Batabyal, D. Jana, Significance of additional food to mutually interfering predator under herd behavior of prey on the stability of a spatio-temporal system. Commun. Nonlinear Sci. Numer. Simul. 93, 105480 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. B. Chakraborty, H. Baek, N. Bairagi, Diffusion-induced regular and chaotic patterns in a ratio-dependent predator-prey model with fear factor and prey refuge. Chaos Interdiscip. J. Nonlinear Sci. 31(3), 033128 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. S.-N. Chow, J.K. Hale, Methods of Bifurcation Theory, vol. 251 (Springer Science & Business Media, Berlin, 2012)

    MATH  Google Scholar 

  50. S. M. Blower, H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example, International Statistical Review/Revue Internationale de Statistique 229–243 (1994)

  51. S. Marino, I.B. Hogue, C.J. Ray, D.E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. S. Djilali, Impact of prey herd shape on the predator-prey interaction. Chaos Solitons Fractals 120, 139–148 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. S. Ghorai, S. Poria, Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey-predator system supplying additional food. Chaos Solitons Fractals 85, 57–67 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. A. J. Belsky, Population and community processes in a mosaic grassland in the Serengeti, Tanzania, J. Ecol. 841–856 (1986)

  55. A. Morozov, S. Petrovskii, Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem. Bull. Math. Biol. 71(4), 863–887 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their helpful comments, which improved the quality of this paper greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shariful Alam.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barman, D., Kumar, V., Roy, J. et al. Modeling wind effect and herd behavior in a predator–prey system with spatiotemporal dynamics. Eur. Phys. J. Plus 137, 950 (2022). https://doi.org/10.1140/epjp/s13360-022-03133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03133-4

Navigation