Skip to main content
Log in

Synchronization behavior in a memristive synapse-connected neuronal network

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Synaptic plasticity is reflected in its ability to change the coupling strength according to the intensity of firing electrical activity in coupled neurons, which can also greatly affect synchronization behavior in neuronal networks. In this paper, synaptic plasticity is modeled based on the constitutive relationship of memristor, and it is only related to the membrane potential of two adjacent coupled neurons. Three types of neuronal network are proposed, that is, the ring network connected by electrical synapses, the ring network connected by mixed electrical and memristive synapses, and the ring network connected by memristive synapses. The firing activities of neurons and synchronization behavior of the three networks are comparatively studied. Direct or periodic forcing current is applied to the neurons in neuronal network, and the accumulated error and variable phase difference are calculated and used to detect synchronization state of the networks. Extensive simulation results confirm that periodic forcing current with appropriate angular frequency is more conducive to network synchronization than the direct one, and coupling strengths of electrical synapse and memristive synapse show different performance on network synchronization due to synaptic plasticity. The results will further deepen the understanding of synaptic plasticity and the synchronous behaviors of neuronal networks considering memristive synapse connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statements

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request].

References

  1. A.L. Hodgkin, A.F. Hulexy, Bull. Math. Biol. 117, 500 (1952)

    Google Scholar 

  2. E.M. Izhikevich, IEEE Trans. Neural Netw. 14, 1569 (2003)

    Article  Google Scholar 

  3. J.L. Hindmarsh, R.M. Rose, Proc. Royal Soc. London B Biol. Sci. 221, 87 (1984)

    ADS  Google Scholar 

  4. J.L. Hindmarsh, R.M. Rose, Nature 296, 162 (1982)

    Article  ADS  Google Scholar 

  5. C. Morris, H. Lecar, Biophys. J. 35, 193 (1981)

    Article  ADS  Google Scholar 

  6. H.R. Wilson, J.D. Cowan, Biophys. J. 12, 1 (1972)

    Article  ADS  Google Scholar 

  7. J. Nagumo, S. Sato, Kybernetik 10, 155 (1972)

    Article  Google Scholar 

  8. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1962)

    Article  Google Scholar 

  9. R. Fitzhugh, Biophys. J. 1, 445 (1961)

    Article  ADS  Google Scholar 

  10. X. Hu, C. Liu, Nonlinear Dyn. 97, 1721 (2019)

    Article  Google Scholar 

  11. X. Hu, C. Liu, L. Liu, J. Ni, S. Li, Nonlinear Dyn. 84, 2317 (2016)

    Article  Google Scholar 

  12. R. Behdad, S. Binczak, A.S. Dmitrichev, V.I. Nekorkin, J.M. Bilbault, IEEE Trans. Neural Netw. Learn. Syst. 26, 1875 (2015)

    Article  MathSciNet  Google Scholar 

  13. H. Gu, Chaos 23, 1350 (2013)

    Article  Google Scholar 

  14. H. Gu, B. Pan, G. Chen, L. Duan, Nonlinear Dyn. 78, 391 (2014)

    Article  Google Scholar 

  15. J. Zhang, S. Huang, S. Pang, M. Wang, S. Gao, Chin. Phys. Lett. 9(2015)

  16. J. Zhang, C. Wang, M. Wang, S. Huang, Neurocomputing 74, 2961 (2011)

    Article  Google Scholar 

  17. D.Q. Wei, X.F. Liao, Y.H. Qi, Phys. A Statistical Mech. Its Appl. 387, 2155 (2008)

    Article  ADS  Google Scholar 

  18. Z.Q. Wang, Y. Xu, H. Yang, Sci. China. (Technol. Sci.) 59, 371 (2016)

    Article  ADS  Google Scholar 

  19. J. Ma, J. Tang, Sci. China Technol. Sci. 58, 2038 (2015)

    Article  ADS  Google Scholar 

  20. M. Nicolelis, A.L. Baccala, A. Luiz, Science 268, 1353 (1995)

    Article  ADS  Google Scholar 

  21. P.J. Uhlhaas, W. Singer, Neuron 52, 155 (2006)

    Article  Google Scholar 

  22. L.O. Chua, IEEE Trans. Circuit Theory 18, 507 (1971)

    Article  Google Scholar 

  23. L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976)

    Article  MathSciNet  Google Scholar 

  24. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  25. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nano Letters 10, 1297 (2010)

    Article  ADS  Google Scholar 

  26. F. Xu, J. Zhang, T. Fang, S. Huang, M. Wang, Nonlinear Dyn. 92, 1395 (2018)

    Article  Google Scholar 

  27. Q. Xu, X. Tan, D. Zhu, M. Chen, J. Zhou, H. Wu, Math. Probl. Eng. 2020, 1 (2020)

    Google Scholar 

  28. H. Bao, W. Liu, A. Hu, Nonlinear Dyn. 95, 43 (2018)

    Article  Google Scholar 

  29. J. Zhang, X. Liao, AEU Int. J. Electron. Commun. 75, 82 (2017)

    Article  Google Scholar 

  30. Y. Xu, Y. Jia, J. Ma, A. Alsaedi, B. Ahmad, Chaos Solitons Fractals 104, 435 (2017)

    Article  ADS  Google Scholar 

  31. H. Bao, Y. Zhang, W. Liu, B. Bao, Nonlinear Dyn. 100, 937 (2020)

    Article  Google Scholar 

  32. A. Pikovsky, M. Rosenblum, J. Kurths, Int. J. Bifurcation Chaos 10, 2291 (2000)

    Article  ADS  Google Scholar 

  33. Z. Yao, P. Zhou, Z. Zhu, J. Ma, Neurocomputing 423, 518 (2021)

    Article  Google Scholar 

Download references

Funding

This work is partially supported by the National Natural Science Foundation of China (Grant No.62001391 and 51877162).

Author information

Authors and Affiliations

Authors

Contributions

All the authors designed research, performed research, and wrote the paper.

Corresponding author

Correspondence to Xiaoyu Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Jiang, B., Chen, J. et al. Synchronization behavior in a memristive synapse-connected neuronal network. Eur. Phys. J. Plus 137, 895 (2022). https://doi.org/10.1140/epjp/s13360-022-03094-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03094-8

Navigation