Skip to main content
Log in

Laguerre fields strength and beam waist-dependent superluminal propagation of light pulse in atomic medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We address the superluminal propagation of light in a four-level atomic medium. The superluminal propagation of the probe field is controlled and modified by the strength and waists of control driving fields. Around the origin of Laguerre coordinates in the x, y plane, localized depth of absorption and localized peaks of dispersion are noticed. The localized depth of absorption and dispersion can be narrowed and broadened by changing the beam waist. Increasing the beam waist, we observed broadening in the width of localized absorption and dispersion. Negative group index from \(-\,10\) to \(-\,20\) and negative group velocity from \(-\,0.06\) to \(-\,0.12\) c are observed at the low beam waist. At high beam waist, group index and group velocity remain the same which shows superluminal behaviour in this region. The modified results show potential applications in gravitational wave detection, soliton radar system and speeding up computer processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This paper is theoretical research and has no associated data.

References

  1. R.Y. Chiao, J. Boyce, Superluminality, parelectricity, and Earnshaws theorem in media with inverted populations. Phys. Rev. Lett. 73(25), 3383 (1994)

    Article  ADS  Google Scholar 

  2. R.Y. Chiao, A.M. Steinberg, Vi: Tunneling times and superluminality. Ser. Prog. Opt. 37, 345–405 (1997)

    Article  Google Scholar 

  3. S. Chu, S. Wong, Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48(11), 738 (1982)

    Article  ADS  Google Scholar 

  4. L.J. Wang, A. Kuzmich, Dogariu enGain-assisted superluminal light propagation. enNature 406(6793), 277–279 (2000)

    ADS  Google Scholar 

  5. M.A.I. Talukder, Y. Amagishi, M. Tomita, Superluminal to subluminal transition in the pulse propagation in a resonantly absorbing medium. Phys. Rev. Lett 86, 3546–3549 (2001). https://doi.org/10.1103/PhysRevLett.86.3546

    Article  ADS  Google Scholar 

  6. A. Haché, L. Poirier, enAnomalous dispersion and superluminal group velocity in a coaxial photonic crystal theory and experiment. enPhys. Rev. E Stat. Nonlinear Soft Matter Phys. 65(3(Pt 2B)), 036608 (2002)

    Article  ADS  Google Scholar 

  7. G . Nimtz, Superluminal signal velocity. Annalen der Physik(7) 7–8, 618–624 (1998). https://doi.org/10.1002/(SICI)1521-3889(199812)7:7/8<618::AID-ANDP618>3.0.CO;2-P

  8. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A.S. Zibrov, V. Vuletic, M.D. Lukin, Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009). https://doi.org/10.1103/PhysRevLett.102.203902

    Article  ADS  Google Scholar 

  9. M. Lukin, A. Imamoğlu, Controlling photons using electromagnetically induced transparency. Nature 413(6853), 273–276 (2001)

    Article  ADS  Google Scholar 

  10. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, enObservation of coherent optical information storage in an atomic medium using halted light pulses. enNature 409(6819), 490–493 (2001)

    ADS  Google Scholar 

  11. S.E. Harris, L.V. Hau, Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999). https://doi.org/10.1103/PhysRevLett.82.4611

    Article  ADS  Google Scholar 

  12. M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, M.O. Scully, Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999). https://doi.org/10.1103/PhysRevLett.82.5229

    Article  ADS  Google Scholar 

  13. L.M. Duan, M.D. Lukin, J.I. Cirac, P. Zoller, enLong-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413–418 (2001)

    Article  ADS  Google Scholar 

  14. A.B. Mirza, S. Singh, Subluminal and superluminal light propagation via electromagnetically induced transparency in radiatively and inhomogeneously broadened media. J. Mod. Opt. 64(7), 716–724 (2017). https://doi.org/10.1080/09500340.2016.1260173

    Article  ADS  Google Scholar 

  15. G. Alzetta, Induced transparency. Phys. Today 50(7), 36–42 (1997)

    Article  Google Scholar 

  16. S.E. Harris, J. Field, A. Imamoğlu, Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64(10), 1107 (1990)

    Article  ADS  Google Scholar 

  17. H.-M. Li, S.-B. Liu, S.-Y. Liu, H.-F. Zhang, Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance. Appl. Phys. Lett. 105(13), 133514 (2014)

    Article  ADS  Google Scholar 

  18. Q.-H. Guo, M. Kang, T.-F. Li, H.-X. Cui, J. Chen, Slow light from sharp dispersion by exciting dark photonic angular momentum states. Opt. Lett. 38(3), 250–252 (2013)

    Article  ADS  Google Scholar 

  19. A. Dogariu, A. Kuzmich, L.J. Wang, Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A 63, 053806 (2001). https://doi.org/10.1103/PhysRevA.63.053806

    Article  ADS  Google Scholar 

  20. A.M. Steinberg, R.Y. Chiao, Dispersionless, highly superluminal propagation in a medium with a gain doublet. Phys. Rev. A 49(3), 2071 (1994)

    Article  ADS  Google Scholar 

  21. E.L. Bolda, J.C. Garrison, R.Y. Chiao, Optical pulse propagation at negative group velocities due to a nearby gain line. Phys. Rev. A 49, 2938–2947 (1994). https://doi.org/10.1103/PhysRevA.49.2938

    Article  ADS  Google Scholar 

  22. M.D. Stenner, D.J. Gauthier, Pump-beam-instability limits to Raman-gain-doublet fast-light pulse propagation. Phys. Rev. A 67(6), 063801 (2003)

    Article  ADS  Google Scholar 

  23. G. Pati, M. Salit, K. Salit, M. Shahriar, Simultaneous slow and fast light effects using probe gain and pump depletion via Raman gain in atomic vapor. Opt. Express 17(11), 8775–8780 (2009)

    Article  ADS  Google Scholar 

  24. J. Zhang, G. Hernandez, Y. Zhu, Copropagating superluminal and slow light manifested by electromagnetically assisted nonlinear optical processes. Opt. Lett. 31(17), 2598–2600 (2006)

    Article  ADS  Google Scholar 

  25. A.B. Mirza, S. Singh, Subluminal and superluminal light propagation via electromagnetically induced transparency in radiatively and inhomogeneously broadened media. J. Mod. Opt. 64(7), 716–724 (2017)

    Article  ADS  Google Scholar 

  26. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, enLight speed reduction to 17 metres per second in an ultracold atomic gas. enNature 397(6720), 594–598 (1999)

    ADS  Google Scholar 

  27. J. Li, J. Liu, X. Yang, enSuperluminal optical soliton via resonant tunneling in coupled quantum dots. enPhysica E Low Dimens. Syst. Nanostruct. 40(9), 2916–2920 (2008)

    Article  ADS  Google Scholar 

  28. S.H. Kazemi, M.A. Maleki, M. Mahmoudi, Absorption-free superluminal light propagation in a landau-quantized graphene. AIP Adv. 8(7), 075023 (2018)

    Article  ADS  Google Scholar 

  29. Z. AminiSabegh, A. Vafafard, M.A. Maleki, M. Mahmoudi, Superluminal pulse propagation and amplification without inversion of microwave radiation via four-wave mixing in superconducting phase quantum circuits. Laser Phys. Lett. 12(8), 085202 (2015)

    Article  ADS  Google Scholar 

  30. M. Mahmoudi, J. Evers, Light propagation through closed-loop atomic media beyond the multiphoton resonance condition. Phys. Rev. A 74, 063827 (2006). https://doi.org/10.1103/PhysRevA.74.063827

    Article  ADS  Google Scholar 

  31. K. Saaidi, B. Ruzbahani, W. Rabiei, M. Mahmoudi, Absorption-free superluminal light propagation in a v-type system. Armen J. Phys. 4, 01 (2010)

    Google Scholar 

  32. G. Juzeliünas and P. Öhberg, Slow light in degenerate fermi gases. Phys. Rev. Lett. 93, 033602 (2004). https://doi.org/10.1103/PhysRevLett.93.033602

    Article  ADS  Google Scholar 

  33. Z. AminiSabegh, M.A. Maleki, M. Mahmoudi, enMicrowave-induced orbital angular momentum transfer. enSci. Rep. 9(1), 3519 (2019)

    ADS  Google Scholar 

  34. Z.A. Sabegh, M. Mahmoudi, Superluminal light propagation in a normal dispersive medium. Opt. Express 29(13), 20463–20476 (2021)

    Article  ADS  Google Scholar 

  35. D. Solli, C.F. McCormick, R.Y. Chiao, J.M. Hickmann, Experimental observation of superluminal group velocities in bulk two-dimensional photonic bandgap crystals. IEEE J. Sel. Top. Quantum Electron. 9, 40–42 (2003)

    Article  ADS  Google Scholar 

  36. W. Zhang, F. Gao, G. Zhang, W. Li, X. Zhang, J. Xu, Experimental observation of subluminal and superluminal light propagation in rhodamine 6g-doped polymethyl methacrylate. Appl. Phys. Lett. 95(17), 171106 (2009). https://doi.org/10.1063/1.3254229

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il-Saudi Arabia through Project Number RG-21 063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehan Akbar.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S., Akbar, J., Qureshi, M.T. et al. Laguerre fields strength and beam waist-dependent superluminal propagation of light pulse in atomic medium. Eur. Phys. J. Plus 137, 963 (2022). https://doi.org/10.1140/epjp/s13360-022-03074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03074-y

Navigation