Abstract
In this paper, the investigation of spatial and temporal dynamics of high power Laguerre-Gaussian laser pulse propagating inside the plasma medium has been presented. The effect of relativistic nonlinearity has been taken into account. The variation in the mass of the relativistic moving electrons introduces perturbation in the dielectric function and results in the generation of the electron plasma wave. This excited electron plasma wave with a high field acts as a wakefield that accelerates the electrons along with it. The variation in the spatial and temporal width of the Laguerre-Gaussian laser pulse has been studied by using the method of moments approach. The solution for the spatial and temporal width parameters of the laser pulse has been obtained numerically by solving two nonlinear coupled differential equations. The electric field of the generated electron plasma wave is then used to calculate the energy gained by the electrons. The spatio-temporal dynamics and energy gain have been studied for different modes of the Laguerre-Gaussian laser pulse. From the investigation, it has been observed that the (0, 2) mode of the Laguerre-Gaussian laser pulse is more suitable for higher energy gain.
This is a preview of subscription content, access via your institution.













Data availability
The data that support the findings of this study are available within the article.
References
R. Betti, O. Hurricane, Inertial-confinement fusion with lasers. Nature 12, 435–448 (2016)
M. Tabak, J. Hammer, M.E. Glinsky, Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626–1634 (1994)
S. Banerjee, A. Valenzuela, R. Shah, A. Maksimchuk, D. Umstadter, High harmonic generation in relativistic laser-plasma interaction. Phys. Plasmas 9(5), 2393–2398 (2002)
T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74(4), 046404 (2006)
P. Amendt, D.C. Eder, S.C. Wilks, X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589 (1991)
J. Yu, Z. Jiang, J. Kieffer, A. Krol, Hard X-ray emission in high intensity femtosecond laser-target interaction. Phys. Plasmas 6, 1318–1322 (1999)
T. Katsouleas, J. Dawson, Unlimited electron acceleration in laser-driven plasma waves. Phys. Rev. Lett. 51(5), 392 (1983)
E. Esarey, P. Sprangle, J. Krall, A. Ting, Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2), 252–288 (1996)
C.E. Max, J. Arons, A.B. Langdon, Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33(4), 209 (1974)
G.-Z. Sun, E. Ott, Y. Lee, P. Guzdar, Self-focusing of short intense pulses in plasmas. Phys. Fluids 30(2), 526–532 (1987)
M. Sodha, S. Sinha, R. Sharma, The self-focusing of laser beams in magnetoplasmas: the moment theory approach. J. Phys. D Appl. Phys. 12(7), 1079 (1979)
J. Wadhwa, A. Singh, Optical guiding of intense hermite-gaussian laser beam in preformed plasma channel and second harmonic generation. Opt. Quantum Electron. 53(8), 1–14 (2021)
G. Hefferon, A. Sharma, I. Kourakis, Electromagnetic pulse compression and energy localization in quantum plasmas. Phys. Lett. A 374(42), 4336–4342 (2010)
O. Shorokhov, A. Pukhov, I. Kostyukov, Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91(26), 265002 (2003)
A. Singh, K. Walia, Relativistic self-focusing and self-channeling of gaussian laser beam in plasma. Appl. Phys. B 101(3), 617–622 (2010)
N. Kant, V. Thakur, Influence of linear absorption and density ramp on self-focusing of the hermite-gaussian chirped pulse laser in plasma. Opt. Quantum Electron. 53(1), 1–10 (2021)
N. Ebrahim, P. Lavigne, S. Aithal, Experiments on the plasma beat-wave accelerator. IEEE Trans. Nucl. Sci. 32(5), 3539–3541 (1985)
Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. Tanaka, H. Takabe et al., Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68(1), 48 (1992)
V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. Mangles et al., Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)
F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, J. Marques, G. Matthieussent et al., Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett. 81(5), 995 (1998)
T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)
P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24, 398–403 (1988)
V.A. Veksler, Principles of acceleration of charged particles. Sov. J. Atom. Energy 1, 77–83 (1956)
Y.W. Chan, Ultra-intense laser radiation as a possible energy booster for relativistic charged particle. Phys. Lett. A 35, 305–306 (1971)
S. Kalmykov, S.A. Yi, G. Shvets, All-optical control of nonlinear focusing of laser beams in plasma beat wave accelerator. Plasma Phys. Control. Fusion 51(2), 024011 (2009)
R. Sharma, P. Chauhan, Nonparaxial theory of cross-focusing of two laser beams and its effects on plasma wave excitation and particle acceleration: Relativistic case. Phys. Plasmas 15, 063103 (2008)
Z. Zhao, B. Lü, Acceleration of electrons by a bessel-gaussian beam in vacuum. Opt. Quant. Electron. 40(9), 615–622 (2008)
M. Litos, E. Adli, J. Allen, W. An, C. Clarke, S. Corde, C. Clayton, J. Frederico, S. Gessner, S. Green et al., 9 gev energy gain in a beam-driven plasma wakefield accelerator. Plasma Phys. Control. Fusion 58(3), 034017 (2016)
A. Dezhpour, S. Jafari, H. Mehdian, Effects of magnetic wiggler field and chirped laser pulse on the wakefield amplitude and electron energy gain in a wiggler-assisted laser wakefield accelerator. Eur. Phys. J. Plus 133(11), 473 (2018)
A. Kumar, N. Kant, H.S. Ghotra, Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse. Opt. Quantum Electron. 53(11), 1–12 (2021)
S. Barzegar, A.R. Niknam, Laser pulse-electron beam synergy effect on electron self-injection and higher energy gain in laser wakefield accelerators. Sci. Rep. 11(1), 1–8 (2021)
A.S. Firouzjaei, B. Shokri, Analysis of radial and longitudinal field of plasma wakefield generated by a laguerre-gauss laser pulse. Phys. Plasmas 23(6), 063102 (2016)
F. Pampaloni, J. Enderlein, Gaussian, hermite-gaussian, and laguerre-gaussian beams: a primer. arXiv preprint physics/0410021 (2004)
S. Vlasov, V. Petrishchev, V. Talanov, Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14(9), 1062–1070 (1971)
J.F. Lam, B. Lippmann, F. Tappert, Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15(3), 419–421 (1975)
Funding
The authors are grateful to the Ministry of Education, Government of India, for providing the financial support to carry out the present research work.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Kad, P., Singh, A. Electron acceleration and spatio-temporal variation of Laguerre-Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137, 885 (2022). https://doi.org/10.1140/epjp/s13360-022-03054-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-022-03054-2