Skip to main content

Electron acceleration and spatio-temporal variation of Laguerre-Gaussian laser pulse in relativistic plasma

Abstract

In this paper, the investigation of spatial and temporal dynamics of high power Laguerre-Gaussian laser pulse propagating inside the plasma medium has been presented. The effect of relativistic nonlinearity has been taken into account. The variation in the mass of the relativistic moving electrons introduces perturbation in the dielectric function and results in the generation of the electron plasma wave. This excited electron plasma wave with a high field acts as a wakefield that accelerates the electrons along with it. The variation in the spatial and temporal width of the Laguerre-Gaussian laser pulse has been studied by using the method of moments approach. The solution for the spatial and temporal width parameters of the laser pulse has been obtained numerically by solving two nonlinear coupled differential equations. The electric field of the generated electron plasma wave is then used to calculate the energy gained by the electrons. The spatio-temporal dynamics and energy gain have been studied for different modes of the Laguerre-Gaussian laser pulse. From the investigation, it has been observed that the (0, 2) mode of the Laguerre-Gaussian laser pulse is more suitable for higher energy gain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Data availability

The data that support the findings of this study are available within the article.

References

  1. R. Betti, O. Hurricane, Inertial-confinement fusion with lasers. Nature 12, 435–448 (2016)

    Google Scholar 

  2. M. Tabak, J. Hammer, M.E. Glinsky, Ignition and high gain with ultrapowerful lasers. Phys. Plasmas 1, 1626–1634 (1994)

    Article  ADS  Google Scholar 

  3. S. Banerjee, A. Valenzuela, R. Shah, A. Maksimchuk, D. Umstadter, High harmonic generation in relativistic laser-plasma interaction. Phys. Plasmas 9(5), 2393–2398 (2002)

    Article  ADS  Google Scholar 

  4. T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74(4), 046404 (2006)

    Article  ADS  Google Scholar 

  5. P. Amendt, D.C. Eder, S.C. Wilks, X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589 (1991)

    Article  ADS  Google Scholar 

  6. J. Yu, Z. Jiang, J. Kieffer, A. Krol, Hard X-ray emission in high intensity femtosecond laser-target interaction. Phys. Plasmas 6, 1318–1322 (1999)

    Article  ADS  Google Scholar 

  7. T. Katsouleas, J. Dawson, Unlimited electron acceleration in laser-driven plasma waves. Phys. Rev. Lett. 51(5), 392 (1983)

    Article  ADS  Google Scholar 

  8. E. Esarey, P. Sprangle, J. Krall, A. Ting, Overview of plasma-based accelerator concepts. IEEE Trans. Plasma Sci. 24(2), 252–288 (1996)

    Article  ADS  Google Scholar 

  9. C.E. Max, J. Arons, A.B. Langdon, Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33(4), 209 (1974)

    Article  ADS  Google Scholar 

  10. G.-Z. Sun, E. Ott, Y. Lee, P. Guzdar, Self-focusing of short intense pulses in plasmas. Phys. Fluids 30(2), 526–532 (1987)

    Article  ADS  Google Scholar 

  11. M. Sodha, S. Sinha, R. Sharma, The self-focusing of laser beams in magnetoplasmas: the moment theory approach. J. Phys. D Appl. Phys. 12(7), 1079 (1979)

    Article  ADS  Google Scholar 

  12. J. Wadhwa, A. Singh, Optical guiding of intense hermite-gaussian laser beam in preformed plasma channel and second harmonic generation. Opt. Quantum Electron. 53(8), 1–14 (2021)

    Article  Google Scholar 

  13. G. Hefferon, A. Sharma, I. Kourakis, Electromagnetic pulse compression and energy localization in quantum plasmas. Phys. Lett. A 374(42), 4336–4342 (2010)

    Article  ADS  MATH  Google Scholar 

  14. O. Shorokhov, A. Pukhov, I. Kostyukov, Self-compression of laser pulses in plasma. Phys. Rev. Lett. 91(26), 265002 (2003)

    Article  ADS  Google Scholar 

  15. A. Singh, K. Walia, Relativistic self-focusing and self-channeling of gaussian laser beam in plasma. Appl. Phys. B 101(3), 617–622 (2010)

    Article  ADS  Google Scholar 

  16. N. Kant, V. Thakur, Influence of linear absorption and density ramp on self-focusing of the hermite-gaussian chirped pulse laser in plasma. Opt. Quantum Electron. 53(1), 1–10 (2021)

    Article  MathSciNet  Google Scholar 

  17. N. Ebrahim, P. Lavigne, S. Aithal, Experiments on the plasma beat-wave accelerator. IEEE Trans. Nucl. Sci. 32(5), 3539–3541 (1985)

    Article  ADS  Google Scholar 

  18. Y. Kitagawa, T. Matsumoto, T. Minamihata, K. Sawai, K. Matsuo, K. Mima, K. Nishihara, H. Azechi, K. Tanaka, H. Takabe et al., Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68(1), 48 (1992)

    Article  ADS  Google Scholar 

  19. V. Malka, S. Fritzler, E. Lefebvre, M.-M. Aleonard, F. Burgy, J.-P. Chambaret, J.-F. Chemin, K. Krushelnick, G. Malka, S. Mangles et al., Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298(5598), 1596–1600 (2002)

    Article  ADS  Google Scholar 

  20. F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F. Dorchies, F. Jacquet, V. Malka, J. Marques, G. Matthieussent et al., Observation of laser wakefield acceleration of electrons. Phys. Rev. Lett. 81(5), 995 (1998)

    Article  ADS  Google Scholar 

  21. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  22. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24, 398–403 (1988)

    Article  ADS  Google Scholar 

  23. V.A. Veksler, Principles of acceleration of charged particles. Sov. J. Atom. Energy 1, 77–83 (1956)

    Article  Google Scholar 

  24. Y.W. Chan, Ultra-intense laser radiation as a possible energy booster for relativistic charged particle. Phys. Lett. A 35, 305–306 (1971)

    Article  ADS  Google Scholar 

  25. S. Kalmykov, S.A. Yi, G. Shvets, All-optical control of nonlinear focusing of laser beams in plasma beat wave accelerator. Plasma Phys. Control. Fusion 51(2), 024011 (2009)

    Article  ADS  Google Scholar 

  26. R. Sharma, P. Chauhan, Nonparaxial theory of cross-focusing of two laser beams and its effects on plasma wave excitation and particle acceleration: Relativistic case. Phys. Plasmas 15, 063103 (2008)

    Article  ADS  Google Scholar 

  27. Z. Zhao, B. Lü, Acceleration of electrons by a bessel-gaussian beam in vacuum. Opt. Quant. Electron. 40(9), 615–622 (2008)

    Article  Google Scholar 

  28. M. Litos, E. Adli, J. Allen, W. An, C. Clarke, S. Corde, C. Clayton, J. Frederico, S. Gessner, S. Green et al., 9 gev energy gain in a beam-driven plasma wakefield accelerator. Plasma Phys. Control. Fusion 58(3), 034017 (2016)

    Article  ADS  Google Scholar 

  29. A. Dezhpour, S. Jafari, H. Mehdian, Effects of magnetic wiggler field and chirped laser pulse on the wakefield amplitude and electron energy gain in a wiggler-assisted laser wakefield accelerator. Eur. Phys. J. Plus 133(11), 473 (2018)

    Article  Google Scholar 

  30. A. Kumar, N. Kant, H.S. Ghotra, Laser wakefield and direct laser acceleration of electron in plasma bubble regime with circularly polarized laser pulse. Opt. Quantum Electron. 53(11), 1–12 (2021)

    Google Scholar 

  31. S. Barzegar, A.R. Niknam, Laser pulse-electron beam synergy effect on electron self-injection and higher energy gain in laser wakefield accelerators. Sci. Rep. 11(1), 1–8 (2021)

    Article  Google Scholar 

  32. A.S. Firouzjaei, B. Shokri, Analysis of radial and longitudinal field of plasma wakefield generated by a laguerre-gauss laser pulse. Phys. Plasmas 23(6), 063102 (2016)

    Article  Google Scholar 

  33. F. Pampaloni, J. Enderlein, Gaussian, hermite-gaussian, and laguerre-gaussian beams: a primer. arXiv preprint physics/0410021 (2004)

  34. S. Vlasov, V. Petrishchev, V. Talanov, Averaged description of wave beams in linear and nonlinear media (the method of moments). Radiophys. Quantum Electron. 14(9), 1062–1070 (1971)

    Article  ADS  Google Scholar 

  35. J.F. Lam, B. Lippmann, F. Tappert, Moment theory of self-trapped laser beams with nonlinear saturation. Opt. Commun. 15(3), 419–421 (1975)

    Article  ADS  Google Scholar 

Download references

Funding

The authors are grateful to the Ministry of Education, Government of India, for providing the financial support to carry out the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvinder Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kad, P., Singh, A. Electron acceleration and spatio-temporal variation of Laguerre-Gaussian laser pulse in relativistic plasma. Eur. Phys. J. Plus 137, 885 (2022). https://doi.org/10.1140/epjp/s13360-022-03054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03054-2