Abstract
Memristor is able to describe the electromagnetic induction evoked by membrane potential of neuron. To this end, the paper presents a simple memristive bi-neuron Hopfield neural network (MBHNN) with electromagnetic induction, where a flux-controlled memristor is used to link one neuron directionally. Coexisting symmetric behaviors are uncovered via theoretical analyses, numerical measures, and circuit simulations. By employing theoretical analyses, we demonstrate that the MBHNN model possesses symmetric solutions and symmetric equilibrium points. By utilizing numerical measures including one- and two-argument bifurcation diagrams, dynamical maps, Lyapunov exponent spectra, basins of attraction, and phase plane plots, we confirm that the proposed MBHNN model displays coexisting periodic and chaotic bubbles and coexisting symmetric attractors. In addition, based on the mathematical model, physical analog circuit is built and the corresponding PSIM circuit simulations are deployed to testify these numerically measured results.
Similar content being viewed by others
Data Availability
My manuscript has no associated data or the data will not be deposited.
References
J. Ma, J. Tang, Nonlinear Dyn. 89, 1569 (2017). https://doi.org/10.1007/s11071-017-3565-3
P. Zhou, X. Zhang, J. Ma, Nonlinear Dyn. 108, 1681 (2022). https://doi.org/10.1007/s11071-022-07282-0
I. Hussain, D. Ghosh, S. Jafari, Appl. Math. Comput. 410, 126461 (2021). https://doi.org/10.1016/j.amc.2021.126461
S. Kumar, X. Wang, J.P. Strachan, Y. Yang, W.D. Lu, Nat. Rev. Mater. (2022). https://doi.org/10.1038/s41578-022-00434-z
T. Deb, A.K. Ghosh, A. Mukherjee, Mat. Today Proc. 5, 2222 (2018). https://doi.org/10.1016/j.matpr.2017.09.222
C.J. Hillar, N.M. Tran, J. Math. Neur. 8, 1 (2018). https://doi.org/10.1186/s13408-017-0056-2
F. Parastesh, S. Jafari, H. Azarnoush, B. Hatef, H. Namazi, D. Dudkowski, Eur. Phys. J. Spec. Top. 228, 2023 (2019). https://doi.org/10.1140/epjst/e2019-800240-5
Y. Pu, Z. Yi, J. Zhou, IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2319 (2017). https://doi.org/10.1109/TNNLS.2016.2582512
F. Cai, S. Kumar, T.V. Vaerenbergh et al., Nat. Electron. 3(7), 409 (2020). https://doi.org/10.1038/s41928-020-0436-6
C.J. Chen, J.Q. Chen, H. Bao, M. Chen, B.C. Bao, Nonlinear Dyn. 95, 3385 (2019). https://doi.org/10.1007/s11071-019-04762-8
C.J. Chen, H. Bao, M. Chen, Q. Xu, B.C. Bao, AEÜ-Int. J Electron. Commun. 111, 152894 (2019). https://doi.org/10.1016/j.aeue.2019.152894
Q. Lai, Z. Wan, H. Zhang, G. Chen, IEEE Trans. Neural Netw. Learn. Syst. (2022). https://doi.org/10.1109/TNNLS.2022.3146570
V.T. Pham, S. Jafari, S. Vaidyanathan, C. Volos, X. Wang, Sci. China Technol. Sci. 59, 358 (2016). https://doi.org/10.1007/s11431-015-5981-2
H. Lin, C. Wang, Y. Tan, Nonlinear Dyn. 99, 2369 (2020). https://doi.org/10.1007/s11071-019-05408-5
F. Du, J.G. Lu, IEEE Trans. Neural Netw. Learn. Syst. 32(9), 3858 (2021). https://doi.org/10.1109/TNNLS.2020.3016038
H. Lin, C. Wang, L. Cui, Y. Sun, C. Xu, F. Yu, IEEE Trans. Ind. Informat. (2022). https://doi.org/10.1109/TII.2022.3155599
F. Yu, H. Chen, X. Kong, Q. Yu, Y. Huang, S. Du, Eur. Phys. J. Plus 137, 434 (2022). https://doi.org/10.1140/epjp/s13360-022-02652-4
C.J. Chen, F.H. Min, Y.Z. Zhang, B.C. Bao, Nonlinear Dyn. 106, 2559 (2021). https://doi.org/10.1007/s11071-021-06910-5
H. Lin, C. Wang, Appl. Math. Comput. 369, 124840 (2020). https://doi.org/10.1016/j.amc.2019.124840
H. Bao, A.H. Hu, W.B. Liu, B.C. Bao, IEEE Trans. Neural Netw. Learn. Syst. 31(2), 502 (2020). https://doi.org/10.1109/TNNLS.2019.2905137
B.C. Bao, A.H. Hu, H. Bao, Q. Xu, M. Chen, H.G. Wu, Complexity 2018, 3872573 (2018). https://doi.org/10.1155/2018/3872573
S. Kaçar, Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-022-00451-7
R. Li, Z. Wang, E. Dong, Nonlinear Dyn. 104, 4459 (2021). https://doi.org/10.1007/s11071-021-06574-1
H. Bao, W. Liu, A. Hu, Nonlinear Dyn. 95, 43 (2019). https://doi.org/10.1007/s11071-018-4549-7
Y. Xu, Y. Jia, J. Ma, A. Alsaedi, B. Ahmad, Chaos Solitons Fract. 104, 435 (2017). https://doi.org/10.1016/j.chaos.2017.09.002
S. Zhang, J. Zheng, X. Wang, Z. Zeng, S. He, Nonlinear Dyn. 102, 2821 (2020). https://doi.org/10.1007/s11071-020-06072-w
H. Lin, C. Wang, Q. Hong, Y. Sun, IEEE Trans. Circuits Syst. II Exp. Briefs 67(12), 3472 (2020). https://doi.org/10.1109/TCSII.2020.3000492
Q. Lai, C. Lai, H. Zhang, C. Li, Chaos Solitons Fract. 158, 112017 (2022). https://doi.org/10.1016/j.chaos.2022.112017
M.J. Hua, H. Bao, H.G. Wu, Q. Xu, B.C. Bao, Chin. J. Phys. 76, 217 (2022). https://doi.org/10.1016/j.cjph.2021.10.042
B.C. Bao, H. Qian, Q. Xu, M. Chen, J. Wang, Y.J. Yu, Front. Comput. Neurosci. 11, 1 (2017). https://doi.org/10.3389/fncom.2017.00081
I.S. Doubla, B. Ramakrishnan, Z.N. Tabekoueng, J. Kengne, K. Rajagopal, Eur. Phys. J. Spec. Top. (2022). https://doi.org/10.1140/epjs/s11734-021-00372-x
T. Dong, X. Gong, T. Huang, Neural Netw. 149, 146 (2022). https://doi.org/10.1016/j.neunet.2022.02.009
Q. Xu, Z. Song, H. Bao, M. Chen, B.C. Bao, AEÜ-Int. J Electron. Commun. 96, 66 (2018). https://doi.org/10.1016/j.aeue.2018.09.017
J.C. Sprott, Int. J. Bifurc. Chaos 21(9), 2391 (2011). https://doi.org/10.1142/S021812741103009X
M. Chen, M.X. Sun, H. Bao, Y.H. Hu, B.C. Bao, IEEE Trans. Ind. Electron. 67(3), 2197 (2020). https://doi.org/10.1109/TIE.2019.2907444
H. Bao, C. Chen, Y. Hu, M. Chen, B. Bao, IEEE Trans. Circuits Syst. II Exp. Briefs 68(4), 1453 (2021). https://doi.org/10.1109/TCSII.2020.3026702
A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985). https://doi.org/10.1016/0167-2789(85)90011-9
B.C. Bao, C.J. Chen, H. Bao, X. Zhang, Q. Xu, M. Chen, Int. J. Bifurc. Chaos 29(4), 1930010 (2019). https://doi.org/10.1142/S0218127419300106
L.L. Huang, Y.L. Wang, Y.C. Jiang, T.F. Lei, Math. Probl. Eng. 2021, 7457220 (2021). https://doi.org/10.1155/2021/7457220
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant No. 61971228, 61871230), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX22_1635).
Author information
Authors and Affiliations
Contributions
The authors contribute equally to this work.
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, C., Min, F. Memristive bi-neuron Hopfield neural network with coexisting symmetric behaviors. Eur. Phys. J. Plus 137, 841 (2022). https://doi.org/10.1140/epjp/s13360-022-03050-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjp/s13360-022-03050-6