Skip to main content
Log in

Tuning of third-order nonlinear optical susceptibility of Eu3+ doped alkali borate glasses in visible region by embedding gold nanoparticles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Alkali borate-based glasses containing Eu2O3 embedded with different concentration of AuCl3 were fabricated by melting and quenching process. The transmission electron microscopic measurements revealed morphology of the gold nanoparticles (NPs) embedded in glasses. The nonlinear optical features have been studied using Z-scan at 532 nm excitation utilizing nanosecond laser pulses. The nonlinear absorption and refraction features were ascertained by operating the Z-scan technique in open aperture (OA) and closed aperture (CA) configurations, respectively. OA and CA Z-scan signatures unveiled the presence of two-photon absorption and self-focusing refraction nonlinearities, respectively. In the AuCl3 varied glasses, the highest value of the third-order nonlinear susceptibility (χ(3)) (8.01 × 10‒13 esu) was obtained for 0.02 mol% of AuCl3 doped glasses. This optimized system annealed at 450 °C for diverse schedules to tune χ(3) of glass matrices to higher value (for 30 h of annealing, the χ(3) found to be 12.77 × 10‒13 esu). The enhancement in χ(3) with respect to the gold NPs and with respect to heat treatment schedules was regarded to electric field generated by gold NPs near the Eu3+ ions. However, the results were adversely attenuated at higher heat treatment durations (at 40 h) due to non-uniform local field generated by larger size gold NPs. The nonlinear optical results suggest that the heavily AuCl3 loaded glass and heat treated at 450 °C for 30 h durations are beneficial for applications in nonlinear photonic devices in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The authors declare that, the data supporting the findings of this study are available within the article. The raw data that support the findings are available on request from the corresponding author.

References

  1. G. Jagannath, M.I. Sayyed, A.M.S. Alhuthali, Ceram. Int. 47, 14330 (2021)

    Article  Google Scholar 

  2. A.G. Pelosi, S.N.C. Santos, J. Dipold, M.B. Andrade, A.C. Hernandes, J.M.P. Almeida, C.R. Mendonça, J. Alloys Compd. 878, 160382 (2021)

    Article  Google Scholar 

  3. P. Ramesh, V. Hegde, A.G. Pramod, B. Eraiah, S.V. Rao, S. Shisina, S. Das, D.A. Agarkov, G.M. Eliseeva, G. Jagannath, M.K. Kokila, Opt. Mater. 108, 110051 (2020)

    Article  Google Scholar 

  4. G. Jagannath, B. Eraiah, A. Gaddam, H. Fernandes, D. Brazete, K. Jayanthi, K.N. Krishnakanth, S. Venugopal Rao, J.M.F. Ferreira, K. Annapurna, A.R. Allu, J. Phys. Chem. C 123, 5591 (2019)

    Article  Google Scholar 

  5. G. Jagannath, A. Gaddam, S.V. Rao, D.A. Agarkov, G.M. Korableva, M. Ghosh, K.K. Dey, J.M.F. Ferreira, A.R. Allu, Scr. Mater. 211, 114530 (2022)

    Article  Google Scholar 

  6. C. Chen, R. Li, Int. Rev. Phys. Chem. 8, 65 (1988)

    Article  Google Scholar 

  7. N. Fatima, A.G. Pramod, P. Ramesh, K.N. Krishnakanth, G. Jagannath, S. Venugopal Rao, Y.F. Nadaf, J. Non Cryst. Solids 556, 120566 (2020)

    Article  Google Scholar 

  8. G. Jagannath, B. Eraiah, K. Jayanthi, S.R. Keshri, S. Som, G. Vinitha, A.G. Pramod, K.N. Krishnakanth, G. Devarajulu, S. Balaji, S. Venugopal Rao, K. Annapurna, S. Das, A.R. Allu, Phys. Chem. Chem. Phys. 22, 2019 (2020)

    Article  Google Scholar 

  9. C. Wu, J. Song, L. Li, M.G. Humphrey, C. Zhang, J. Mater. Chem. C 4, 8189 (2016)

    Article  Google Scholar 

  10. J.M.P. Almeida, L. De Boni, A.C. Hernandes, C.R. Mendonça, Opt. Express 19, 17220 (2011)

    Article  ADS  Google Scholar 

  11. D. Manzani, C.B. De Araújo, G. Boudebs, Y. Messaddeq, S.J.L. Ribeiro, J. Phys. Chem. B 117, 408 (2013)

    Article  Google Scholar 

  12. J. Gangareddy, E. Bheemaiah, V. Gandhiraj, J.T. James, J.K. Jose, K. Katturi Naga, V.R. Soma, Appl. Phys. B Lasers Opt. 124, 205 (2018)

    Article  ADS  Google Scholar 

  13. Z. Shi, N. Dong, D. Zhang, X. Jiang, G. Du, S. Lv, J. Chen, J. Wang, S. Zhou, J. Am. Ceram. Soc. 102, 3965 (2019)

    Article  Google Scholar 

  14. P. Ramesh, V. Hegde, K. Keshavamurthy, A.G. Pramod, G. Jagannath, D.A. Aloraini, A.H. Almuqrin, M.I. Sayyed, K.S. Harisha, S. Khan, K. Annapurna, S.V. Rao, M.K. Kokila, Opt. Mater. 116, 111102 (2021)

    Article  Google Scholar 

  15. G. Jagannath, A.G. Pramod, K. Keshavamurthy, B.N. Swetha, B. Eraiah, R. Rajaramakrishna, P. Ramesh, H. Vinod, S.C. Prashantha, A.M.S. Alhuthali, M.I. Sayyed, Optik 232, 166563 (2021)

    Article  ADS  Google Scholar 

  16. N. Fatima, A.G. Pramod, P. Ramesh, K.N. Krishnakanth, G. Jagannath, S.V. Rao, Y.F. Nadaf, J. Non. Cryst. Solids 556, 120566 (2021)

    Article  Google Scholar 

  17. T.D.P.V. Jalluri, K.V. Sriram, B. Rudraswamy, V. Hegde, G. Devarajulu, K.N.N. Prasad, A.G. Pramod, D. Abdullah Aloraini, A.H. Almuqrin, M.I. Sayyed, B. Eraiah, S.C. Prashantha, S. Venugopal Rao, G. Jagannath, Infrared Phys. Technol. 116, 103784 (2021)

    Article  Google Scholar 

  18. C. Eevon, M.K. Halimah, A. Zakaria, C.A.C. Azurahanim, M.N. Azlan, M.F. Faznny, Res. Phys. 6, 761 (2016)

    Google Scholar 

  19. N. Fatima, A.G. Pramod, G. Jagannath, R. Rajaramakrishna, K. Keshavamurthy, P. Ramesh, K.N. Sathish, A.M.S. Alhuthali, M.I. Sayyed, V. Hegde, S.V. Rao, Y.F. Nadaf, Ceram. Int. 47, 16801 (2021)

    Article  Google Scholar 

  20. I. Fuks-Janczarek, R. Miedzinski, L.R.P. Kassab, F.M. Alves, Mater. Res. Bull. 77, 8 (2016)

    Article  Google Scholar 

  21. R. Miedzinski, I. Fuks-Janczarek, L.R.P. Kassab, F.A. Bomfim, Mater. Res. Bull. 95, 339 (2017)

    Article  Google Scholar 

  22. S.K. Ghoshal, A. Awang, M.R. Sahar, R. Arifin, J. Lumin. 159, 265 (2015)

    Article  Google Scholar 

  23. G. Jagannath, B. Eraiah, K. NagaKrishnakanth, and S. Venugopal Rao, J. Non. Cryst. Solids 482, 160 (2018).

  24. S.Y. Moustafa, M.R. Sahar, S.K. Ghoshal, J. Alloys Compd. 712, 781 (2017)

    Article  Google Scholar 

  25. S. Singla, V.G. Achanta, O.P. Pandey, G. Sharma, Opt. Mater. 96, 109334 (2019)

    Article  Google Scholar 

  26. H. Nasu, J. Matsuoka, O. Sugimoto, M. Kida, K. Kamiya, J. Ceram. Soc. Japan 101, 43 (1993)

    Article  Google Scholar 

  27. H. Hase, H. Nase, J. Matsuoka, K. Kamiya, J. Ceram. Soc. Japan 103, 1117 (1995)

    Article  Google Scholar 

  28. M.R. Dousti, M.R. Sahar, R.J. Amjad, S.K. Ghoshal, A. Awang, J. Lumin. 143, 368 (2013)

    Article  Google Scholar 

  29. B. Karthikeyan, M. Anija, C.S. Suchand Sandeep, T.M. Muhammad Nadeer, R. Philip, Opt. Commun. 281, 2933 (2008)

    Article  ADS  Google Scholar 

  30. F. Hache, D. Ricard, C. Flytzanis, U. Kreibig, Appl. Phys. A 1988(474), 347 (1988)

    Article  ADS  Google Scholar 

  31. Q. Liu, X. He, X. Zhou, F. Ren, X. Xiao, C. Jiang, H. Zhou, X. Zhao, L. Lu, S. Qian, J. Non. Cryst. Solids 221, 2320 (2011)

    Article  ADS  Google Scholar 

  32. P. Kumar, M.C. Mathpal, S. Hamad, S.V. Rao, J.H. Neethling, A.J. van Vuuren, E.G. Njoroge, R.E. Kroon, W.D. Roos, H.C. Swart, Appl. Mater. Today 15, 323 (2019)

    Article  Google Scholar 

  33. P. Kumar, M.C. Mathpal, G. Jagannath, J. Prakash, J.-R. Maze, W.D. Roos, H.C. Swart, Nanotechnology 32, 345709 (2021)

    Article  Google Scholar 

  34. I. Fuks-Janczarek, R. Miedzinski, L.R.P. Kassab, C.D.S. Bordon, Opt. Mater. (Amst). 102, 109794 (2020)

    Article  Google Scholar 

  35. K. Keshavamurthy, B. N. Swetha, F. F. Al‒Harbi, J. G, A. H. Almuqrin, M. I. Sayyed, S. Ben Ahmed, A. G. Pramod, S. Itigi, R. P, D. R. Patwari, N. L. Murthy, K. N. Sathish, and S. V. Rao, Opt. Mater. 111804 (2021).

  36. Y. Al-Hadeethi, M.I. Sayyed, A.Z. Barasheed, M. Ahmed, G. Jagannath, Opt. Mater. 125, 112106 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by Institutional Fund Projects under grant no. (IFPHI: 187‒130‒2020). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

YAH conceptualization, methodology, data curation, writing–original draft and editing, writing–review and editing, project administration, funding acquisition, ATK data curation, writing–original draft and editing, writing–review and editing, MA data curation, writing–review and editing, MIS data curation, writing–review and editing, GJ methodology, data curation, writing–review and editing.

Corresponding authors

Correspondence to Yas Al‒Hadeethi or Gangareddy Jagannath.

Ethics declarations

Conflict of interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al‒Hadeethi, Y., Kutbee, A.T., Ahmed, M. et al. Tuning of third-order nonlinear optical susceptibility of Eu3+ doped alkali borate glasses in visible region by embedding gold nanoparticles. Eur. Phys. J. Plus 137, 765 (2022). https://doi.org/10.1140/epjp/s13360-022-02992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02992-1

Navigation