Skip to main content
Log in

Phenomenon in DC lines analogous to proximity effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It is casually assumed that charges are evenly distributed in conductors carrying direct current, unlike conductors carrying alternating current where proximity effect can be observed. The work negates this hypothesis through theoretical analysis and thoroughly conducted finite element simulations. All suspicions and expectations are validated affirmatively. A theoretical framework is developed to support the non-trivial findings, which conclusively establish the dependence of a transverse voltage on current in the conductor, distance between conductors, radius of the conductor, material, etc. and, most importantly, the occurrence of charge concentration in DC system. The exploration of the investigated phenomenon reveals deflection in electron path, which concentrates them toward one side, producing an effect in the DC system analogous to the proximity effect.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data.

References

  1. Z. Popovic, B. Popovic, Chapter 20: The Skin Effect (Prentice-Hall, Introductory Electromagnetics, 1999)

  2. M.A. Matzek, B.R. Russell, On the transverse electric field within a conductor carrying a steady current. Am. J. Phys. 36(10), 905–907 (1968). https://doi.org/10.1119/1.1974305

    Article  ADS  Google Scholar 

  3. D.V. Redžić, Charges and fields in a current-carrying wire. Eur. J. Phys. 33(3), 513 (2012). https://doi.org/10.1088/0143-0807/33/3/513

    Article  Google Scholar 

  4. R. Folman, On the possibility of a relativistic correction to the E and B fields around a current-carrying wire. In Journal of Physics: Conference Series, vol. 437 (IOP Publishing, 2013), p. 012013. https://doi.org/10.1088/1742-6596/437/1/012013

  5. A. Šunjerga, F. Sokolić, M. Rubinstein, F. Rachidi, Lorentz force from a current-carrying wire on a charge in motion under the assumption of neutrality in the symmetrical frame of reference. J. Mod. Phys. 9(14), 2473–2481 (2018). https://doi.org/10.4236/jmp.2018.914159

    Article  Google Scholar 

  6. N. Flourentzou, V.G. Agelidis, G.D. Demetriades, VSC-based HVDC power transmission systems: an overview. IEEE Trans. Power Electron. 24(3), 592–602 (2009). https://doi.org/10.1109/tpel.2008.2008441

    Article  ADS  Google Scholar 

  7. M. Guarnieri, The alternating evolution of DC power transmission [historical]. IEEE Ind. Electron. Mag. 7(3), 60–63 (2013). https://doi.org/10.1109/MIE.2013.2272238

    Article  Google Scholar 

  8. M. Bahrman, B. Johnson, The ABCs of HVDC transmission technologies. IEEE Power Energy Mag. 5(2), 32–44 (2007). https://doi.org/10.1109/mpae.2007.329194

    Article  Google Scholar 

  9. E.H. Rhoderick, The Hall effect - an important diagnostic tool. III-Vs Rev. 13(3), 46–51 (2000). https://doi.org/10.1016/s0961-1290(00)88881-x

    Article  Google Scholar 

  10. N. Goel, A. Babuta, A. Kumar, S. Ganguli, Hall effect instruments, evolution, implications, and future prospects. Rev. Sci. Instrum. 91(7), 071502 (2020). https://doi.org/10.1063/5.0009647

    Article  ADS  Google Scholar 

  11. A. Karsenty, A comprehensive review of integrated Hall effects in macro-, micro-, nanoscales, and quantum devices. Sensors 20(15), 4163 (2020). https://doi.org/10.3390/s20154163

    Article  ADS  Google Scholar 

  12. G. Viola, D.P. DiVincenzo, Hall effect gyrators and circulators. Phys. Rev. X 4(2), 021019 (2014). https://doi.org/10.1103/PhysRevX.4.021019

    Article  Google Scholar 

  13. K. Michaeli, K.S. Tikhonov, A.M. Finkel’stein, Hall effect in superconducting films. Phys. Rev. B 86(1), 014515 (2012). https://doi.org/10.1103/PhysRevB.86.014515

    Article  ADS  Google Scholar 

  14. W.A. Reed, E. Fawcett, Y.B. Kim, Observation of the Hall effect in superconductors. Phys. Rev. Lett. 14(19), 790 (1965)

    Article  ADS  Google Scholar 

  15. M. Onoda, S. Murakami, N. Nagaosa, Hall effect of light. Phys. Rev. Lett. 93(8), 083901 (2004). https://doi.org/10.1103/PhysRevLett.93.083901

    Article  ADS  Google Scholar 

  16. C.R. Braiding, M. Wardle, The Hall effect in star formation. Mon. Not. R. Astron. Soc. 422(1), 261–281 (2012). https://doi.org/10.1111/j.1365-2966.2012.20601.x

    Article  ADS  Google Scholar 

  17. M. Wardle, Star formation and the Hall effect, in Magnetic Fields and Star Formation. (Springer, Dordrecht), pp. 231–237. https://doi.org/10.1007/978-94-017-0491-5_24

  18. C.R. Braiding, M. Wardle, The Hall effect in accretion flows. Mon. Not. R. Astron. Soc. 427(4), 3188–3195 (2012). https://doi.org/10.1111/j.1365-2966.2012.22001.x

    Article  ADS  Google Scholar 

  19. M. Ghasemnezhad, The importance of Hall effect on the magnetized thin accretion disc. Mon. Not. R. Astron. Soc. 492(2), 1770–1777 (2020). https://doi.org/10.1093/mnras/stz3550

    Article  ADS  Google Scholar 

  20. X. Zhou, On independence, completeness of Maxwell’s equations and uniqueness theorems in electromagnetics. Prog. Electromag. Res. 64, 117–134 (2006). https://doi.org/10.2528/PIER06061302

    Article  Google Scholar 

  21. D.J. Griffiths, M.A. Heald, Time-dependent generalizations of the Biot-Savart and Coulomb laws. Am. J. Phys. 59(2), 111–117 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  22. O.D. Jefimenko, Solutions of Maxwell’s equations for electric and magnetic fields in arbitrary media. Am. J. Phys. 60(10), 899–902 (1992)

    Article  ADS  Google Scholar 

  23. D.J. Griffiths, Introduction to Electrodynamics, 3rd edn. (Pearson Education, Dorling Kindersley, 2007)

  24. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, NJ, USA, 2004)

    MATH  Google Scholar 

  25. K.T. McDonald, Charge Density in a Current-Carrying Wire. https://www.physics.princeton.edu/~mcdonald/examples/wire.pdf. Accessed on March 15, 2021

  26. K. Aledealat, C.L. Duston, Application of Ampere’s law to a non-infinite wire and to a moving charge. Eur. J. Phys. 39(4), 045204 (2018). https://doi.org/10.1088/1361-6404/aabda9

    Article  MATH  Google Scholar 

  27. J. Anacleto, J.M. Ferreira, Comment on “magnetic field due to a finite length current-carrying wire using the concept of displacement current.’’. Phys. Teach. 53(2), 68 (2015). https://doi.org/10.1119/1.4905795

    Article  ADS  Google Scholar 

  28. C. Christodoulides, Comparison of the Ampère and Biot-Savart magnetostatic force laws in their line-current-element forms. Am. J. Phys. 56(4), 357–362 (1988). https://doi.org/10.1119/1.15613

    Article  ADS  Google Scholar 

  29. W.R. McKinnon, S.P. McAlister, C.M. Hurd, Origin of the force on a current-carrying wire in a magnetic field. Am. J. Phys. 49(5), 493–494 (1981). https://doi.org/10.1119/1.12488

    Article  Google Scholar 

  30. M. Sakai, N. Honda, F. Fujimoto, O. Nakamura, H. Shibata, A complementary study of the role of the Hall electric field for generation of the force on current-carrying wire in a magnetic field. Am. J. Phys. 78(2), 160–169 (2010). https://doi.org/10.1119/1.3263818

    Article  ADS  Google Scholar 

  31. E.I. Bousiou, P.N. Mikropoulos, V.N. Zagkanas, Corona inception field of typical overhead line conductors under variable atmospheric conditions. Electr. Power Syst. Res. 178, 106032 (2020). https://doi.org/10.1016/j.epsr.2019.106032

    Article  Google Scholar 

  32. N. Idir, Y. Weens, J.J. Franchaud, Skin effect and dielectric loss models of power cables. IEEE Trans. Dielectr. Electr. Insul. 16(1), 147–154 (2009). https://doi.org/10.1109/TDEI.2009.4784562

    Article  Google Scholar 

  33. A.B. Kozyrev, D.W. van der Weide, Explanation of the inverse Doppler effect observed in nonlinear transmission lines. Phys. Rev. Lett. 94(20), 203902 (2005). https://doi.org/10.1103/PhysRevLett.94.203902

    Article  ADS  Google Scholar 

  34. P.N. Mikropoulo, V.N. Zagkanas, T.S. Koustoulidis, Experimental investigation of DC corona on stranded conductors under variable air density. In 2012 47th International Universities Power Engineering Conference (UPEC) (IEEE, 2012). pp. 1–6. https://doi.org/10.1109/UPEC.2012.6398421

  35. J. Nitsch, S. Tkachenko, High-frequency multiconductor transmission-line theory. Found Phys. 40, 1231–1252 (2010). https://doi.org/10.1007/s10701-010-9443-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. J.T. Pan, W.Z. Chen, F. Tao, W. Xu, Influence of impurities on solitons in the nonlinear LC transmission line. Phys. Rev. E 83(1), 016601 (2011). https://doi.org/10.1103/PhysRevE.83.016601

    Article  ADS  Google Scholar 

  37. J.R. Zurita-Sánchez, C. Henkel, Lossy electrical transmission lines: thermal fluctuations and quantization. Phys. Rev. A 73(6), 063825 (2006). https://doi.org/10.1103/PhysRevA.73.063825

    Article  ADS  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Abhimanyu Kumar was responsible for conceptualization, visualization, formal analysis, and writing the original draft. Chandupatla Chakradhar Reddy contributed to resources, visualization, and reviewing/editing the draft. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Abhimanyu Kumar.

Ethics declarations

Conflict of interest

No competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Reddy, C.C. Phenomenon in DC lines analogous to proximity effect. Eur. Phys. J. Plus 137, 767 (2022). https://doi.org/10.1140/epjp/s13360-022-02955-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02955-6

Navigation