Skip to main content
Log in

Coexisting behaviors of chaotic system with tri-stable locally active memristor and its application in color image encryption

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we proposed a novel tri-stable nonvolatile locally active memristor and analyzed its nonvolatile and locally active characteristics. The phenomenon of edge of chaos in a certain voltage range is found. When the memristor is applied in a simple series circuit with an inductor and a DC power, we can observe Hopf bifurcation and periodic oscillation in the edge region of chaos. When the proposed locally active memristor is applied to the simplest chaotic circuit, some double coexisting phenomena can be observed from coexisting attractors and attraction basin. Furthermore, a color image encryption scheme based on DNA coding is proposed using the proposed memristive chaotic system, and the security of the scheme is evaluated by statistical analysis and different attacks. Finally, the proposed memristive chaotic system is implemented based on ARM platform; at the same time, a color image encryption scheme on DNA encoding and chaotic sequence is implemented in ARM platform. The experimental results are in good agreement with the numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. L.O. Chua, IEEE Trans. Circuits Syst. 18, 507 (1971)

    Google Scholar 

  2. D.B. Strukov, G.S. Snider, D.R. Stewart, Nature 453, 80 (2008)

    Article  ADS  Google Scholar 

  3. B. Julien, G.S. Snider, P.J. Kuekes, Nature 464, 873 (2010)

    Article  ADS  Google Scholar 

  4. Y.V. Pershin, S.L. Fontaine, M.D. Ventra, Phys. Rev. E 80, 021926 (2009)

    Article  ADS  Google Scholar 

  5. M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, Nature 521, 61 (2015)

    Article  ADS  Google Scholar 

  6. X. Huang, Y. Fan, J. Jia, I.E.T. Control, Theory Appl. 11, 2317 (2017)

    Google Scholar 

  7. Y. Li, X. Huang, Y. Song, Int. J. Bifurcation Chaos. 25, 1550151 (2015)

    Article  Google Scholar 

  8. M. Guo, Y. Xue, Z. Gao, Int. J. Bifurcation Chaos. 27, 1730047 (2017)

    Article  Google Scholar 

  9. J. Sun, C. Li, T. Lu, A. Akgul, IEEE Access. 8, 139289 (2020)

    Article  Google Scholar 

  10. K. Zhan, D. Wei, J. Shi, J. Electron. Imaging. 26, 013021 (2017)

    Article  ADS  Google Scholar 

  11. M.P. Sah, H. Kim, L.O. Chua, IEEE Circuits Syst. 14, 12 (2014)

    Article  Google Scholar 

  12. L.O. Chua, Int. J. Bifurcation Chaos. 15, 3435 (2005)

    Article  MathSciNet  Google Scholar 

  13. L.O. Chua, Semicond. Sci. Technol. 29, 1 (2014)

    MathSciNet  Google Scholar 

  14. A. Ascoli, R. Tetzlaff, L.O. Chua, IEEE Trans. Circuits Syst. II Express Briefs. 63, 1091 (2016)

    Google Scholar 

  15. A. Ascoli, R. Tetzlaff, L.O. Chua, IEEE Trans. Circuits Syst. II Express Briefs. 63, 1096 (2016)

    Google Scholar 

  16. J. Ying, G. Wang, Y. Dong, Int. J. Bifurcation Chaos. 29, 1930030 (2019)

    Article  Google Scholar 

  17. H. Chang, Int. J. Bifurcat Chaos. 28, 1850105 (2018)

    Article  Google Scholar 

  18. W.Y. Gu, Chin. Phys. B. 29, 110503 (2020)

    Article  ADS  Google Scholar 

  19. Y. Yu, H. Bao, M. Shi, Complexity 2019, 2051053 (2019)

    Google Scholar 

  20. Z.J. Li, H.Y. Zhou, M.J. Wang, Nonlinear Dyn. 104, 1455 (2021)

    Article  Google Scholar 

  21. T.F. Fonzin, J. Kengne, F.B. Pelap, Nonlinear Dyn. 93, 653 (2018)

    Article  Google Scholar 

  22. M. Chen, Q. Xu, Y. Lin, Nonlinear Dyn. 87, 1 (2017)

    Article  Google Scholar 

  23. B. Bao, H. Bao, N. Wang, Chaos Solitons Fractals 94, 102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. G. Ablay, Nonlinear Dyn. 81, 1795 (2015)

    Article  MathSciNet  Google Scholar 

  25. Q. Lai, Z. Wan, IEEE Trans. Circuits Syst. II Express Briefs 68, 2197 (2021)

    ADS  Google Scholar 

  26. H. Chang, Y. Li, G. Chen, Int. J. Bifurcation Chaos. 30, 434 (2020)

    Google Scholar 

  27. Q. Lai, Int. J. Bifurcation Chaos. 31, 2150013 (2021)

    Article  Google Scholar 

  28. Y.J. Dong, G.Y. Wang, G.R. Chen, Nonlinear Sci. Num. Simul. 84, 105203 (2020)

    Article  Google Scholar 

  29. Y.J. Dong, G.Y. Wang, Y. Liang, Commu. Nonlinear Sci. Num. Simul. 105, 106086 (2022)

    Article  Google Scholar 

  30. Y. Zhou, L. Bao, C. Chen, Signal Process. 97, 172 (2014)

    Article  Google Scholar 

  31. X. Wang, L. Teng, Q. Xue, Signal Process. 92, 1101 (2012)

    Article  Google Scholar 

  32. G.Z. Xiao, M.X. Lu, L. Qin, Chin. Sci. Bull. 51, 1413 (2006)

    Article  Google Scholar 

  33. M. Yildirim, Microelectronics J. 104, 104878 (2020)

    Article  Google Scholar 

  34. Q. Zhang, L. Guo, X. Wei, Comput. Model. 52, 2028 (2010)

    Article  Google Scholar 

  35. L. Liu, Q. Zhang, X. Wei, Comput. Electr. Eng. 38, 1240 (2012)

    Article  Google Scholar 

  36. X.Y. Wang, Y.Q. Zhang, X.M. Bao, Opt. Lasers. Eng. 73, 53 (2015)

    Article  Google Scholar 

  37. X. Wu, H. Kan, Appl. Soft Comput. 37, 24 (2015)

    Article  Google Scholar 

  38. X. Chai, Z. Gan, K. Yuan, Neural. Comput. Appl. 31, 219 (2017)

    Article  Google Scholar 

  39. L.O. Chua, Appl. Phys. A. 102, 765 (2011)

    Article  ADS  Google Scholar 

  40. L.O. Chua, Nanotechnology 24, 383001 (2013)

    Article  ADS  Google Scholar 

  41. L.O. Chua, Radioengineering. 24, 319 (2015)

    Article  Google Scholar 

  42. Z.I. Mannan, H. Choi, H. Kim, Int. J. Bifurcation Chaos. 27, 1730011 (2017)

    Article  ADS  Google Scholar 

  43. Y. Dong, Commun. Nonlinear Sci. Numer Simul 84, 105203 (2020)

    Article  MathSciNet  Google Scholar 

  44. R. Dogaru, L.O. Chua, Int. J. Bifurcation Chaos. 09, 1 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All the authors are deeply grateful to the editors for careful and fast handling of the manuscript. The authors would also like to thank the anonymous referees for their valuable suggestions to improve the quality of this paper. This research is supported by the National College Students Innovation and Entrepreneurship Training Program (No. 202110357099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H.L., Ding, D.W., Yang, Z.L. et al. Coexisting behaviors of chaotic system with tri-stable locally active memristor and its application in color image encryption. Eur. Phys. J. Plus 137, 607 (2022). https://doi.org/10.1140/epjp/s13360-022-02814-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02814-4

Navigation