Skip to main content
Log in

Multistability analysis and color image encryption application of a fractional-order hyperchaotic system with double coupled memristors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a novel fractional-order hyperchaotic system with double coupled memristors is proposed, and the hyperchaotic sequences generated by our system are applied to color image encryption. Firstly, the fractional-order mathematical model of the double coupled memristor is designed, which displays some different characteristics. Secondly, the stability of the fractional-order hyperchaotic system on the double coupled memristors is analyzed. Thirdly, complex dynamical behaviors of the novel system are analyzed using bifurcation diagram, Lyapunov diagram, phase diagram and attraction basin, and multistability phenomena are observed when the initial values are changed; therefore, the system can be applied to information security field. Finally, a color image encryption scheme on DNA coding is proposed, and the security of the scheme is evaluated by different attack methods. Numerical simulation indicates the validity of the theoretical analysis and robustness of the proposed image encryption scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

This manuscript has associated data in a data repository. [Authors’ comment: All dates contained in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. L. Chua, IEEE Trans. Circuit Theory. 1971, 18 (1971)

    Google Scholar 

  2. H. Li, Y. Yang, W. Li et al., Eur. Phys. J. Plus. 135(7), 1–18 (2020)

    Article  ADS  Google Scholar 

  3. J. Ying, Y. Liang, J. Wang et al., Chaos Solitons Fractals. 148(7191), 111038 (2021)

    Article  Google Scholar 

  4. F.M. Kamal, A. Elsonbaty, A. Elsaid, Chaos Solitons Fractals. 144(3), 110686 (2021)

    Article  Google Scholar 

  5. Z. Li, H. Zhou, M. Wang et al., Nonlinear Dyn. 104(2), 1455–1473 (2021)

    Article  Google Scholar 

  6. X. Liu, J. Mou, J. Wang et al., Eur. Phys. J. Plus. 136(11), 1182 (2021)

    Article  Google Scholar 

  7. M.L. Ma, Y. Yang, Z.C. Qiu, Y.X. Peng, Y.C. Sun, Z.J. Li, M.J. Wang, Nonlinear Dyn. 107(3), 2935–2949 (2022)

    Article  Google Scholar 

  8. L. Zhang, K. Sun, S. He et al., Eur. Phys. J. Plus. 132(1), 31 (2017)

    Article  ADS  Google Scholar 

  9. M. Rahim, H. Natiq, N. Fataf et al., Eur. Phys. J. Plus. 134(10), 499 (2019)

    Article  Google Scholar 

  10. N.V. Stankevich, A.P. Kuznetsov, E.P. Seleznev, Chaos Solitons Fractals. 147(4), 110998 (2021)

    Article  Google Scholar 

  11. X. Ye, X. Wang, J. Mou et al., Eur. Phys. J. Plus. 133(12), 516 (2018)

    Article  Google Scholar 

  12. A. Karthikeyan, M.E. Cimen, A. Akgul et al., Nonlinear Dyn. 103(2), 1979–1998 (2021)

    Article  Google Scholar 

  13. M. Yan, H. Xu, Eur. Phys. J. Plus. 135(6), 452 (2020)

    Article  ADS  Google Scholar 

  14. T. Liu, H. Yan, S. Banerjee et al., Chaos Solitons Fractals. 145(2), 110791 (2021)

    Article  Google Scholar 

  15. X.J. Ma, J. Mou, X. Li et al., Chaos Solitons Fractals. 152, 111363 (2021)

    Article  Google Scholar 

  16. L.K. Kengne, J. Pone, F. Hilaire, Chaos Solitons Fractals. 145, 110795 (2021)

    Article  Google Scholar 

  17. L. Feng, C. Hu, J. Yu et al., Chaos Solitons Fractals. 148, 110993 (2021)

    Article  Google Scholar 

  18. S.A. Gerasimova, A.V. Lebedeva, A. Fedulina et al., Chaos Solitons Fractals. 146, 110804 (2021)

    Article  Google Scholar 

  19. A.S. Etémé, C.B. Tabi, J. Ateba et al., Nonlinear Dyn. 105, 785–795 (2021)

    Article  Google Scholar 

  20. W. Sun, Z. Guo, Commun. Nonlinear Sci. Numer. Simul. 98(53), 105776 (2021)

    Article  Google Scholar 

  21. F. Fontanela, A. Vizzaccaro, J. Auvray et al., Nonlinear Dyn. 103(4), 3417–3428 (2021)

    Article  Google Scholar 

  22. Y. Liu, J. Wang, Chaos Solitons Fractals. 151(8), 111242 (2021)

    Article  Google Scholar 

  23. C.W. Wu, IEEE Trans. Neural. Netw. Learn. Syst. 68, 1660–1664 (2021)

    ADS  Google Scholar 

  24. R. Tang, H. Su, Y. Zou et al., IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–11 (2021)

    Google Scholar 

  25. X. Zhang, F. Wu, J. Ma et al., Int. J. Electron. Commun. 115(12), 153050 (2020)

    Article  ADS  Google Scholar 

  26. J. Ma, F.Q. Wu, A. Alsaedi, J. Tang, Nonlinear Dyn. 93, 2057–2069 (2018)

    Article  Google Scholar 

  27. H. Bao, R.Y. Ding, M.J. Hua, H.G. Wu, B. Chen, Math. 10(3), 411 (2022)

    Article  Google Scholar 

  28. C. Zheng, T. Fernando, D. Yu, H. Guo, J.K. Eshraghian, Chaos 28(6), 063115 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. He, K. Sun, S. Banerjee, Eur. Phys. J. Plus. 131(8), 1–12 (2016)

    Article  Google Scholar 

  30. S. Akbar, T. Hameed, M.A. Qureshi et al., Integration. 79, 73–93 (2021)

    Google Scholar 

  31. J. Wang, L. Xiao, K. Rajagopal et al., Symmetry. 13(2), 340 (2021)

    Article  Google Scholar 

  32. N. Mlaiki, J. Eng. Math. 2021, 9990439 (2021)

    Google Scholar 

  33. S. Liu, F. Sun, L. Feng, Comput. Appl. Math. 40(4), 112 (2021)

    Article  Google Scholar 

  34. J.B. Diaz, T.J. Olser, Math. Comput. 28(125), 185–202 (1974)

    Article  Google Scholar 

  35. C. Li, Chin. Phys. B. 30(2), 020501(2021)

  36. J.F. Li, H.D. Jahanshah et al., Chaos Solitons Fractals. 145, 110681 (2021)

    Article  Google Scholar 

  37. W. Xie, C. Wang, H. Lin, Nonlinear Dyn. 104(4), 4523–4541 (2021)

    Article  Google Scholar 

  38. O. Megherbi, H. Hamiche, S. Djennoune et al., Nonlinear Dyn. 90, 1519–1533 (2017)

    Article  Google Scholar 

  39. N. Wang, G. Zhang, N. Kuznetsov et al., Commun. Nonlinear Sci. Numer. Simul. 92, 105494 (2021)

    Article  Google Scholar 

  40. G. Dou, H. Yang, Z. Gao et al., Int. J. Bifurcation Chaos. 30(11), 2030043 (2020)

    Article  ADS  Google Scholar 

  41. Q. Lai, Z. Wan, L.K. Kengne et al., IEEE Trans. Circ. Syst. II Express Briefs. 68(6), 2197–2201 (2021)

    ADS  Google Scholar 

  42. L. Huang, Y. Wang, Y. Jiang et al., Math. Probl. Eng 10, 1–16 (2021)

    Google Scholar 

  43. J.Y. Wang, J. Mou, X. Li, Y.Q. Zhang, Y.H. Cao, Chaos Solitons Fractals. 152, 111324 (2021)

  44. L.K. Kengne, Y. Nkandeu, J. Pone et al., Int. J. Circ. Theory. App. 49(2), 221–533 (2021)

    Article  Google Scholar 

  45. B. Vaseghi, S.S. Hashemi, S. Mobayen et al., IEEE Access. 9, 21332–21344 (2020)

    Article  Google Scholar 

  46. X. Ye, X. Wang, S. Gao et al., Nonlinear Dyn. 99(2), 1489–1506 (2020)

    Article  Google Scholar 

  47. L.M. Zhang, K.H. Sun, W.H. Liu et al., Chin. Phys. B. 26(10), 98–106 (2017)

    Google Scholar 

  48. X. Chai, Z. Gan, K. Yuan et al., Neural. Comput. Appl. 31(1), 219–237 (2019)

    Article  Google Scholar 

  49. B. Taa, D. Sbc, G.C. Wu, Optik 203, 163698 (2020)

    Google Scholar 

  50. G.C. Wu, Z.G. Deng, D. Baleanu et al., Chaos 29, 083103 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  51. G.C. Wu et al., Jvib. Control. 22(8), 2092–2099 (2016)

    Google Scholar 

  52. B. Bao, K. Rong, H. Li et al., IEEE Trans Circ. Syst. II Express Briefs. 99, 1–1 (2021)

    Google Scholar 

  53. J. Machado, T. Kiryakova, V. Mainardi, Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  54. C. Du, L. Liu, Z. Zhang et al., Nonlinear Dyn. 104(1), 765–787 (2021)

    Article  Google Scholar 

  55. H. Chang, Y. Li, G. Chen et al., Int. J. Bifurcation Chaos. 30(08), 434–445 (2020)

    Article  Google Scholar 

  56. P. Li, J. Xu, J. Mou, F.F. Yang, J. Eurasip, Image Video Process. 2019, 22 (2019)

    Article  Google Scholar 

  57. G.C. Wu, M. Luo, L.L. Huang et al., Nonlinear Dyn. 100, 3611–3623 (2020)

    Article  Google Scholar 

  58. Y.R. Bai, D. Baleanu, G.C. Wu, Optik 168, 553–562 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Zhu, A., Yang, Z. et al. Multistability analysis and color image encryption application of a fractional-order hyperchaotic system with double coupled memristors. Eur. Phys. J. Plus 137, 682 (2022). https://doi.org/10.1140/epjp/s13360-022-02811-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02811-7

Navigation