D.W. Hughes, Meteorite falls and finds: some statistics. Meteorities 16, 269–281 (1981)
ADS
Article
Google Scholar
D.E. Brownlee, in The Sea 7, ed. By C. Emiliani. Extraterrestrial Components (J. Wiley and Sons, Inc., New York, 1981), pp. 733–762
S.G. Love, D.E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993)
ADS
Article
Google Scholar
J. Murray, A.F. Renard, in Proceedings of the Royal Society of Edinburgh vol XII. On the Microscopic Characters of Volcanic Ashes and Cosmic Dust, and Their Distribution in Deep-Sea Deposits (1876), pp. 474–495
M.B. Blanchard, D.E. Brownlee, T.E. Bunch, P.W. Hodge, F.T. Kyte, Meteor ablation spheres from deep-sea sediments. NASA Tech. Memorand. 78510 (1978)
R. Ganapathy, D.E. Brownlee, P.W. Hodge, Silicate spherules from deep-sea sediments: confirmation of extraterrestrial origin. Science 201, 1119–1121 (1978)
ADS
Article
Google Scholar
E.L. Krinov, Über die Natur der Mikro-meteoriten. Chem. Erde. 20, 28–35 (1959)
Google Scholar
K. Fredriksson, R. Gowdy, Meteoritic debris from the Southern California desert. Geochim. Cosmochim. Acta 27, 241–243 (1963)
ADS
Article
Google Scholar
U.B. Marvin, M.T. Einaudi, Black, magnetic spherules from Pleistocene and recent beach sands. Geochim. Cosmochim. Acta 31, 1871–1884 (1967)
ADS
Article
Google Scholar
D.E. Brownlee, Meteorite mining on the ocean floor (abstract). Lunar Planet Sci. 10, 157–158 (1979)
ADS
Google Scholar
J. Czajkowski, P. Englert, Z.A. Bosellini, J.G. Ogg, Cobalt enriched hardgrounds—newsources of ancient extraterrestrial materials. Meteoritics 18, 286–287 (1983)
ADS
Google Scholar
C. Jehanno, D. Boclet, P. Bonte, A. Castellarin, R. Rocchia, in Proceedings of the 19th Lunar and Planetary Science Conference, vol 18. Identification of Two Populations of Extraterrestrial Particles in a Jurassic Hardground of the Southern Alps (Lunar and Planetary Institute, Houston), pp. 623–630 (1988).
S. Taylor, D.E. Brownlee, Cosmic spherules in the geologic record. Meteoritics 26, 203–211 (1991)
ADS
Article
Google Scholar
M. Maurette, C. Hammer, D.E. Brownlee, N. Reeh, H.H. Thomsen, Placers of cos-mic dust in the blue ice lakes of Greenland. Science 233, 869–872 (1986)
ADS
Article
Google Scholar
E.H. Hagen, Geochemical studies of Neo-gene till in the Transantarctic Mountains: evidence for an extraterrestrial component. M.S. thesis, The Ohio State University (1988)
F. Yiou, G.M. Raisbeck, in Workshop on Differences Between Antarctic and Non-Antarctic Meteorites, LPI Technical Report 90-01. Cosmic spherules from Antarctic Ice Cores as Proxy Indicators of Extraterrestrial Matter Influx During the Last 150,000 Years (Lunar and Planetary Institute, Houston, 1990), pp. 99–100
O.P. Popova et al., Chelyabinsk airburst, damage assessment, meteorite recovery and characterization. Science 342, 1069–1073 (2013)
ADS
Article
Google Scholar
N. Gorkavyi, D.F. Rault, P.A. Newman, A.M. da Silva, A.E. Dudorov, New stratospheric dust belt due to the Chelyabinsk bolide. Geophys. Res. Lett. 40, 4728–4733 (2013)
ADS
Article
Google Scholar
S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl. Lab. 18, 43 (2007)
Google Scholar
D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, B.A. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802 (2002)
T. Ozaki, H. Kino, J. Yu, M.J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, T. Ohwaki, H. Weng, K. Terakura, Open source package for material explorer. http://www.openmx-square.org
J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1996)
ADS
Article
Google Scholar
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)
ADS
Article
Google Scholar
S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)
Article
Google Scholar
W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)
ADS
Article
Google Scholar
G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635 (1992)
ADS
Article
Google Scholar
S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)
ADS
Article
Google Scholar
S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)
ADS
Article
Google Scholar
M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993). https://doi.org/10.1002/jcc.540141112
Article
Google Scholar
G.M. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J.E. Deustua, D.G. Fedorov, J.R. Gour, A.O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S.S. Leang, H. Li, W. Li, J.J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B.Q. Pham, P. Piecuch, D. Poole, S.R. Pruitt, A.P. Rendel, L.B. Roskop, K. Ruedenberg, T. Sattasathuchana, M.W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J.L.G. Alvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev, M.S. Gordon, Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188
ADS
Article
Google Scholar
M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)
A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)
C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)
ADS
Article
Google Scholar
R. Ditchfield, W.J. Hehre, J.A. Pople, Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)
S.S. Bukalov, R.R. Aysin, L.A. Leites, V.E. Eremyashev, Discovery of cubic diamond and sp2 carbon micro-particles in “Chelyabinsk” meteorite by Raman micro-mapping. Carbon 64, 548–550 (2013)
Article
Google Scholar
A.T. Karczemska, Diamonds in meteorites—Raman mapping and cathodoluminescence studies. J. Achiev. Mater. Manuf. Eng. 43, 94–107 (2010)
Google Scholar
N. Tokuda, M. Fukui, T. Makino, D. Takeuchi, S. Yamsaki, T. Inokuma, Formation of graphene-on-diamond structure by graphitization of atomically flat diamond (111) surface. Jpn. J. Appl. Phys. 52, 110121 (2013)
ADS
Article
Google Scholar
S. Matsumoto, Y. Matsui, Electron microscopic observation of diamond particles grown from the vapor phase. J. Mater. Sci. 18, 1785–1793 (1983)
ADS
Article
Google Scholar
J. Narayan, A.R. Srivatsa, M. Peters, S. Yokota, K.V. Ravi, On epitaxial growth of diamond films on (100) silicon substrates. Appl. Phys. Lett. 53, 1823–1825 (1988)
ADS
Article
Google Scholar
M. Sunkara, J.C. Angus, C.C. Hayman, F.A. Buck, Nucleation of diamond crystals. Carbon 28, 745–746 (1990)
Article
Google Scholar
J. Bühler, Y. Prior, Study of morphological behavior of single diamond crystals. J. Cryst. Growth 209, 779–788 (2000)
ADS
Article
Google Scholar
R.C. Mani, M.K. Sunkara, Kinetic faceting of multiply twinned diamond crystals during vapor phase synthesis. Diam. Relat. Mater. 12, 324–332 (2003)
ADS
Article
Google Scholar
B. Raoult, J. Farges, M.F. De Feraudy, G. Torchet, Comparison between icosahedral, decahedral and crystalline lennard-jones models containing 500 to 6000 atoms. Philos. Mag. B 60, 881–906 (1989)
ADS
Article
Google Scholar
L. Zeger, E. Kaxiras, New model for icosahedral carbon clusters and the structure of collapsed fullerite. Phys. Rev. Lett. 70, 2920 (1993)
ADS
Article
Google Scholar
J.T. Tanskanen, M. Linnolahti, A.J. Karttunen, T.A. Pakkanen, From fulleranes and icosahedral diamondoids to polyicosahedral nanowires: Structural, electronic, and mechanical characteristics. J. Phys. Chem. C 112, 11122–11129 (2008)
Article
Google Scholar
V.Y. Shevchenko, A.E. Madison, Icosahedral diamond. Glas. Phys. Chem. 32, 118–121 (2006)
Article
Google Scholar
A.N. Enyashin, A.L. Ivanovski, Atomic and electronic structures and stability of icosahedral nanodiamonds and onions. Phys. Solid State 49, 392–397 (2007)
ADS
Article
Google Scholar
P.V. Avramov, L.A. Chernozatonskii, P.B. Sorokin, M.S. Gordon, Multiterminal nanowire junctions of silicon: A theoretical prediction of atomic structure and electronic properties. Nano Lett. 7, 2063–2067 (2007)
ADS
Article
Google Scholar
P.V. Avramov, D.G. Fedorov, P.B. Sorokin, L.A. Chernozatonskii, M.S. Gordon, Atomic and electronic structure of new hollow-based symmetric families of silicon nanoclusters. J. Phys. Chem. C 111, 18824–18830 (2007)
Article
Google Scholar
P.V. Avramov, A.A. Kuzubov, A.S. Fedorov, F.N. Tomilin, P.B. Sorokin, Density-functional theory study of the electronic structure of thin Si/SiO2 quantum nanodots and nanowires. Phys. Rev. B 75, 205427 (2007)
ADS
Article
Google Scholar
F. Banhart, Formation and transformation of carbon nanoparticles under electron irradiation. Philos. Trans. R. Soc. Lond. A 362, 2205–2222 (2004)
ADS
Article
Google Scholar
W.A. Chupka, M.G. Inghram, Direct determination of the heat of sublimation of carbon with the mass spectrometer. J. Phys. Chem. 59, 100–104 (1955)
Article
Google Scholar
K.R. Thompson, R.L. DeKock, W. Weltner Jr, Spectroscopy of carbon molecules. IV. C4, C5, C6 (and C9). J. Am. Chem. Soc. 93, 4688–4695 (1971)