Skip to main content

Exotic carbon microcrystals in meteoritic dust of the Chelyabinsk superbolide: experimental investigations and theoretical scenarios of their formation

Abstract

When a space body enters Earth’s atmosphere, its surface is exposed to high pressure and temperatures. The airflow tears off small droplets from the meteoroid forming a cloud of meteorite dust. Can new materials be synthesized in these unique conditions (high temperature, pressure, gaseous atmosphere, catalysts)? As a rule, meteoritic dust dissipates in the atmosphere without a trace or is mixed with terrestrial soil. The Chelyabinsk superbolide, the biggest in the twenty-first century, which exploded on February 15, 2013 above snowy fields of the Southern Urals, was an exception. The unique carbon crystals with a size of several micrometers, which were not observed before, were found during an in-depth study of the meteoritic dust. In order to explain the experimental findings, a multiple twin growth mechanism for the formation of closed shell graphite microcrystals was proposed based on DFT and classical/ab initio MD simulations. It was found that among several possible embryo carbon nanoclusters, the C60 fullerene and polyhexacyclooctadecane –C18H12– may be the main suspects, responsible for the formation of the experimentally observed closed shell quasi-spherical and hexagonal rod graphite microcrystals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. D.W. Hughes, Meteorite falls and finds: some statistics. Meteorities 16, 269–281 (1981)

    ADS  Article  Google Scholar 

  2. D.E. Brownlee, in The Sea 7, ed. By C. Emiliani. Extraterrestrial Components (J. Wiley and Sons, Inc., New York, 1981), pp. 733–762

  3. S.G. Love, D.E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993)

    ADS  Article  Google Scholar 

  4. J. Murray, A.F. Renard, in Proceedings of the Royal Society of Edinburgh vol XII. On the Microscopic Characters of Volcanic Ashes and Cosmic Dust, and Their Distribution in Deep-Sea Deposits (1876), pp. 474–495

  5. M.B. Blanchard, D.E. Brownlee, T.E. Bunch, P.W. Hodge, F.T. Kyte, Meteor ablation spheres from deep-sea sediments. NASA Tech. Memorand. 78510 (1978)

  6. R. Ganapathy, D.E. Brownlee, P.W. Hodge, Silicate spherules from deep-sea sediments: confirmation of extraterrestrial origin. Science 201, 1119–1121 (1978)

    ADS  Article  Google Scholar 

  7. E.L. Krinov, Über die Natur der Mikro-meteoriten. Chem. Erde. 20, 28–35 (1959)

    Google Scholar 

  8. K. Fredriksson, R. Gowdy, Meteoritic debris from the Southern California desert. Geochim. Cosmochim. Acta 27, 241–243 (1963)

    ADS  Article  Google Scholar 

  9. U.B. Marvin, M.T. Einaudi, Black, magnetic spherules from Pleistocene and recent beach sands. Geochim. Cosmochim. Acta 31, 1871–1884 (1967)

    ADS  Article  Google Scholar 

  10. D.E. Brownlee, Meteorite mining on the ocean floor (abstract). Lunar Planet Sci. 10, 157–158 (1979)

    ADS  Google Scholar 

  11. J. Czajkowski, P. Englert, Z.A. Bosellini, J.G. Ogg, Cobalt enriched hardgrounds—newsources of ancient extraterrestrial materials. Meteoritics 18, 286–287 (1983)

    ADS  Google Scholar 

  12. C. Jehanno, D. Boclet, P. Bonte, A. Castellarin, R. Rocchia, in Proceedings of the 19th Lunar and Planetary Science Conference, vol 18. Identification of Two Populations of Extraterrestrial Particles in a Jurassic Hardground of the Southern Alps (Lunar and Planetary Institute, Houston), pp. 623–630 (1988).

  13. S. Taylor, D.E. Brownlee, Cosmic spherules in the geologic record. Meteoritics 26, 203–211 (1991)

    ADS  Article  Google Scholar 

  14. M. Maurette, C. Hammer, D.E. Brownlee, N. Reeh, H.H. Thomsen, Placers of cos-mic dust in the blue ice lakes of Greenland. Science 233, 869–872 (1986)

    ADS  Article  Google Scholar 

  15. E.H. Hagen, Geochemical studies of Neo-gene till in the Transantarctic Mountains: evidence for an extraterrestrial component. M.S. thesis, The Ohio State University (1988)

  16. F. Yiou, G.M. Raisbeck, in Workshop on Differences Between Antarctic and Non-Antarctic Meteorites, LPI Technical Report 90-01. Cosmic spherules from Antarctic Ice Cores as Proxy Indicators of Extraterrestrial Matter Influx During the Last 150,000 Years (Lunar and Planetary Institute, Houston, 1990), pp. 99–100

  17. O.P. Popova et al., Chelyabinsk airburst, damage assessment, meteorite recovery and characterization. Science 342, 1069–1073 (2013)

    ADS  Article  Google Scholar 

  18. N. Gorkavyi, D.F. Rault, P.A. Newman, A.M. da Silva, A.E. Dudorov, New stratospheric dust belt due to the Chelyabinsk bolide. Geophys. Res. Lett. 40, 4728–4733 (2013)

    ADS  Article  Google Scholar 

  19. S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl. Lab. 18, 43 (2007)

    Google Scholar 

  20. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, B.A. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802 (2002)

  21. T. Ozaki, H. Kino, J. Yu, M.J. Han, N. Kobayashi, M. Ohfuti, F. Ishii, T. Ohwaki, H. Weng, K. Terakura, Open source package for material explorer. http://www.openmx-square.org

  22. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 78, 1396 (1996)

    ADS  Article  Google Scholar 

  23. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    ADS  Article  Google Scholar 

  24. S. Grimme, S. Ehrlich, L. Goerigk, Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011)

    Article  Google Scholar 

  25. W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)

    ADS  Article  Google Scholar 

  26. G.J. Martyna, M.L. Klein, M. Tuckerman, Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635 (1992)

    ADS  Article  Google Scholar 

  27. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    ADS  Article  Google Scholar 

  28. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    ADS  Article  Google Scholar 

  29. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, General atomic and molecular electronic structure system. J. Comp. Chem. 14, 1347–1363 (1993). https://doi.org/10.1002/jcc.540141112

    Article  Google Scholar 

  30. G.M. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva, J.E. Deustua, D.G. Fedorov, J.R. Gour, A.O. Gunina, E. Guidez, T. Harville, S. Irle, J. Ivanic, K. Kowalski, S.S. Leang, H. Li, W. Li, J.J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata, B.Q. Pham, P. Piecuch, D. Poole, S.R. Pruitt, A.P. Rendel, L.B. Roskop, K. Ruedenberg, T. Sattasathuchana, M.W. Schmidt, J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari, J.L.G. Alvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev, M.S. Gordon, Recent developments in the general atomic and molecular electronic structure system. J. Chem. Phys. 152, 154102 (2020). https://doi.org/10.1063/5.0005188

    ADS  Article  Google Scholar 

  31. M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 107, 3902–3909 (1985)

  32. A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

  33. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)

    ADS  Article  Google Scholar 

  34. R. Ditchfield, W.J. Hehre, J.A. Pople, Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971)

  35. S.S. Bukalov, R.R. Aysin, L.A. Leites, V.E. Eremyashev, Discovery of cubic diamond and sp2 carbon micro-particles in “Chelyabinsk” meteorite by Raman micro-mapping. Carbon 64, 548–550 (2013)

    Article  Google Scholar 

  36. A.T. Karczemska, Diamonds in meteorites—Raman mapping and cathodoluminescence studies. J. Achiev. Mater. Manuf. Eng. 43, 94–107 (2010)

    Google Scholar 

  37. N. Tokuda, M. Fukui, T. Makino, D. Takeuchi, S. Yamsaki, T. Inokuma, Formation of graphene-on-diamond structure by graphitization of atomically flat diamond (111) surface. Jpn. J. Appl. Phys. 52, 110121 (2013)

    ADS  Article  Google Scholar 

  38. S. Matsumoto, Y. Matsui, Electron microscopic observation of diamond particles grown from the vapor phase. J. Mater. Sci. 18, 1785–1793 (1983)

    ADS  Article  Google Scholar 

  39. J. Narayan, A.R. Srivatsa, M. Peters, S. Yokota, K.V. Ravi, On epitaxial growth of diamond films on (100) silicon substrates. Appl. Phys. Lett. 53, 1823–1825 (1988)

    ADS  Article  Google Scholar 

  40. M. Sunkara, J.C. Angus, C.C. Hayman, F.A. Buck, Nucleation of diamond crystals. Carbon 28, 745–746 (1990)

    Article  Google Scholar 

  41. J. Bühler, Y. Prior, Study of morphological behavior of single diamond crystals. J. Cryst. Growth 209, 779–788 (2000)

    ADS  Article  Google Scholar 

  42. R.C. Mani, M.K. Sunkara, Kinetic faceting of multiply twinned diamond crystals during vapor phase synthesis. Diam. Relat. Mater. 12, 324–332 (2003)

    ADS  Article  Google Scholar 

  43. B. Raoult, J. Farges, M.F. De Feraudy, G. Torchet, Comparison between icosahedral, decahedral and crystalline lennard-jones models containing 500 to 6000 atoms. Philos. Mag. B 60, 881–906 (1989)

    ADS  Article  Google Scholar 

  44. L. Zeger, E. Kaxiras, New model for icosahedral carbon clusters and the structure of collapsed fullerite. Phys. Rev. Lett. 70, 2920 (1993)

    ADS  Article  Google Scholar 

  45. J.T. Tanskanen, M. Linnolahti, A.J. Karttunen, T.A. Pakkanen, From fulleranes and icosahedral diamondoids to polyicosahedral nanowires: Structural, electronic, and mechanical characteristics. J. Phys. Chem. C 112, 11122–11129 (2008)

    Article  Google Scholar 

  46. V.Y. Shevchenko, A.E. Madison, Icosahedral diamond. Glas. Phys. Chem. 32, 118–121 (2006)

    Article  Google Scholar 

  47. A.N. Enyashin, A.L. Ivanovski, Atomic and electronic structures and stability of icosahedral nanodiamonds and onions. Phys. Solid State 49, 392–397 (2007)

    ADS  Article  Google Scholar 

  48. P.V. Avramov, L.A. Chernozatonskii, P.B. Sorokin, M.S. Gordon, Multiterminal nanowire junctions of silicon: A theoretical prediction of atomic structure and electronic properties. Nano Lett. 7, 2063–2067 (2007)

    ADS  Article  Google Scholar 

  49. P.V. Avramov, D.G. Fedorov, P.B. Sorokin, L.A. Chernozatonskii, M.S. Gordon, Atomic and electronic structure of new hollow-based symmetric families of silicon nanoclusters. J. Phys. Chem. C 111, 18824–18830 (2007)

    Article  Google Scholar 

  50. P.V. Avramov, A.A. Kuzubov, A.S. Fedorov, F.N. Tomilin, P.B. Sorokin, Density-functional theory study of the electronic structure of thin Si/SiO2 quantum nanodots and nanowires. Phys. Rev. B 75, 205427 (2007)

    ADS  Article  Google Scholar 

  51. F. Banhart, Formation and transformation of carbon nanoparticles under electron irradiation. Philos. Trans. R. Soc. Lond. A 362, 2205–2222 (2004)

    ADS  Article  Google Scholar 

  52. W.A. Chupka, M.G. Inghram, Direct determination of the heat of sublimation of carbon with the mass spectrometer. J. Phys. Chem. 59, 100–104 (1955)

    Article  Google Scholar 

  53. K.R. Thompson, R.L. DeKock, W. Weltner Jr, Spectroscopy of carbon molecules. IV. C4, C5, C6 (and C9). J. Am. Chem. Soc. 93, 4688–4695 (1971)

Download references

Acknowledgements

We sincerely thank all students and staffs of Chelyabinsk State University who were involved in the process of meteoritic dust collection. This work was partially supported by Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST “MISIS” (No. K2-2020-045), implemented by a governmental decree dated 16th of March 2013, N 211. P.A. acknowledges Kyungpook National University Research Fund, 2021.

Funding

Ministry of Science and Higher Education, K2-2020-045, Vladimir Khovaylo, Kyungpook National University, research found, Pavel Avramov.

Author information

Authors and Affiliations

Authors

Contributions

ST discovered carbon particles, planned and supervised the whole project, wrote the paper. KS, AD, VK & OG provided scientific support and contributed to the discussions. GS & ST made optic investigations and all samples preparations. NG discovered mineral whiskers and organized with AD collection of meteoritic dust. WD & TF performed XRD investigations and particles extraction. WB and AK performed DFT and MD simulations of multiply twinned carbon nano- and microcrystals, PA suggested structural models of multiply twinned carbon nano- and microcrystals and suggested the mechanisms of their formation. ST & DSM made SEM and Raman measurements and analyze them. All the authors contributed to the manuscript preparation.

Corresponding authors

Correspondence to Sergey Taskaev or Vladimir Khovaylo.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9390 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Taskaev, S., Skokov, K., Khovaylo, V. et al. Exotic carbon microcrystals in meteoritic dust of the Chelyabinsk superbolide: experimental investigations and theoretical scenarios of their formation. Eur. Phys. J. Plus 137, 562 (2022). https://doi.org/10.1140/epjp/s13360-022-02768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02768-7