Skip to main content
Log in

A new set of hyperchaotic maps based on modulation and coupling

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a class of hyperchaotic mappings is constructed based on one-dimensional Logistic map and modulated coupling control methods. First, the equilibrium points of the system are analyzed using the M-SS map as an example and it is found that the M-SS map has infinite equilibrium points. Second, the dynamical characteristics of the newly constructed hyperchaotic maps are analyzed by means of phase diagram, bifurcation diagram, Lyapunov exponent spectrums and complexity. The analysis shows that the newly constructed class of hyperchaotic mappings has richer dynamical properties than the one-dimensional Logistic map, such as wider chaotic domains, hyperchaotic states and higher complexity. In addition, the DSP implementation of the hyperchaotic maps illustrates the feasibility of the class of chaotic maps in digital circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. B. R. Hunt, T.Y. Li, J.A. Kennedy, H.E. Nusse, Period Three Implies Chaos, vol. 6, no Chapter (Springer, New York, 2004), pp. 77–84. https://doi.org/10.1007/978-0-387-21830-4

  2. C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors. Appl. Math. Sci. 41(1), 106–110 (1982)

    MathSciNet  MATH  Google Scholar 

  3. J.B. Mclaughlin, Period-doubling bifurcations and chaotic motion for a parametrically forced pendulum. J. Statal Phys. 24(2), 375–388 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  4. M.V. Torbett, Chaotic motion in a comet disk beyond Neptune—the delivery of short-period comets. Astron. J. 98(4), 1477–1481 (1989)

    Article  ADS  Google Scholar 

  5. Q. Chen, L. Huang, Y.C. Lai, C. Grebogi, D. Dietz, Extensively chaotic motion in electrostatically driven nanowires and applications. Nano Lett. 10(2), 406–413 (2010)

    Article  ADS  Google Scholar 

  6. L. Xuejun, J. Mou, Y. Cao, S. Banerjee, An optical image encryption algorithm based on a fractional-order laser hyperchaotic system. Int. J. Bifurc. Chaos 32, 03/15 (2022). https://doi.org/10.1142/S0218127422500353

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Vaidyanathan, A.T. Azar, Analysis, control and synchronization of a nine-term 3-D novel chaotic system. Kyungpook Math.J. 55(3), 563–586 (2015)

    Article  MathSciNet  Google Scholar 

  8. J. Lu, X. Wu, J. Lü, Synchronization of a unified chaotic system and the application in secure communication. Phys. Lett. A 305(6), 365–370 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. X. Gao, J. Mou, S. Banerjee, Y. Cao, L. Xiong, X. Chen, An effective multiple-image encryption algorithm based on 3D cube and hyperchaotic map. J. King Saud Univ. Comput. Inf. Sci. 34(4), 1535–1551 (2022). https://doi.org/10.1016/j.jksuci.2022.01.017

    Article  Google Scholar 

  10. S. Strogatz, A. Edwards, Sync-how order emerges from chaos in the universe, nature, and daily life. Math. Intell. 27(1), 89–89 (2005)

  11. M. Kyriazis, Practical applications of chaos theory to the modulation of human ageing: nature prefers chaos to regularity. Biogerontology 4(2), 75–90 (2003)

    Article  Google Scholar 

  12. R.P. Taylor, Science and art: emergence of patterns from nature’s chaos, through parallels between Edward Lorenz and Yves Klein. Nonlinear Dyn. Psychol. Life Sci. 13(3), 341–348 (2009)

    MathSciNet  Google Scholar 

  13. C. Li, G. Peng, Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2), 443–450 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. H.N. Agiza, Chaos synchronization of Lü dynamical system. Nonlinear Anal. 58(1–2), 11–20 (2004)

    Article  MathSciNet  Google Scholar 

  15. C. Ma, J. Mou, L. Xiong, S. Banerjee, X. Han, Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn, 103(3), 2867–2880 (2021)

    Article  Google Scholar 

  16. T. Liu, J. Yu, H. Yan, J. Mou, A fractional-order chaotic system with infinite attractor coexistence and its DSP implementation. IEEE Access 8, 199852–199863 (2020)

    Article  Google Scholar 

  17. L.-L. Huang, S. Liu, J.-H. Xiang, A.L.-Y. Wang, Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors. Chin. Phys. B 30(10), 100506–100506 (2021)

    ADS  Google Scholar 

  18. A.P. Veselov, Integrable discrete-time systems and difference operators. Funct. Anal. Appl. 22(2), 83–93 (1988)

    Article  MathSciNet  Google Scholar 

  19. Y. Zhang, H. Gong, J. Li, B. Qiu, M. Yang, Discrete time-varying four fundamental operations implemented by Euler forward difference, pp. 9807-9812 (2017)

  20. I. Talbi et al., Different dimensional fractional-order discrete chaotic systems based on the Caputo h-difference discrete operator: dynamics, control, and synchronization. Adv. Differ. Equ. 2020(1), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  21. C.F. Feng, H.J. Yang, Projective-lag synchronization scheme between two different discrete-time chaotic systems. Int. J. Non-Linear Mech. 121, 103451 (2020)

    Article  ADS  Google Scholar 

  22. S. Dai, K. Sun, W. Ai, Y. Peng, Novel discrete chaotic system via fractal transformation and its DSP implementation. Modern Phys. Lett. B 34(Supp01), 2050429 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. T. Liu, S. Banerjee, H. Yan, J. Mou, Dynamical analysis of the improper fractional-order 2D-SCLMM and its DSP implementation. Eur. Phys. J. Plus 136(5), 1–17 (2021)

    Article  Google Scholar 

  24. C. Ma, J. Mou, P. Li, T. Liu, Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order. Eur. Phys. J. Spec. Top. 203(7), 1945–1957 (2021)

    Article  Google Scholar 

  25. S. Bendoukha, Stabilization and Synchronization of Discrete-time Fractional Chaotic Systems with Non-identical Dimensions. Acta Mathematicae Applicatae Sinica (English Series) 37(3), 16 (2021)

    MathSciNet  MATH  Google Scholar 

  26. M. Long, L.L. Wang, S-box design based on discrete chaotic map and improved artificial bee colony algorithm. IEEE Access PP(99), 1–1 (2021)

  27. X. Ma, J. Mou, J. Liu, C. Ma, F. Yang, X. Zhao, A novel simple chaotic circuit based on memristor-memcapacitor. Nonlinear Dyn. 100(3), 2859–2876 (2020). https://doi.org/10.1007/s11071-020-05601-x

    Article  Google Scholar 

  28. C. Qin, K. Sun, S. He, Characteristic analysis of fractional-order memristor-based hypogenetic jerk system and its DSP implementation. Electronics 10(7), 841 (2021)

    Article  Google Scholar 

  29. Q. Zhang, G. Chen, L. Wan, Exponential synchronization of discrete-time impulsive dynamical networks with time-varying delays and stochastic disturbances. Neurocomputing 309(OCT.2), 62–69 (2018)

    Article  Google Scholar 

  30. G. Chen, Y. Shi, Introduction to anti-control of discrete chaos: theory and applications. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 364(1846), 2433–2447 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  31. L. Chen, Y. Hao, T. Huang, L. Yuan, L. Yin, Chaos in fractional-order discrete neural networks with application to image encryption. Neural Netw. 125, 174–184 (2020)

    Article  Google Scholar 

  32. C. Chen, K. Sun, Q. Xu, A color image encryption algorithm based on 2D-CIMM chaotic map. China Commun. 17(5), 9 (2020)

    Google Scholar 

  33. X. Gao, J. Mou, L. Xiong, Y. Sha, H. Yan, Y. Cao, A fast and efficient multiple images encryption based on single channel encryption and chaotic system. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-021-07192-7

    Article  Google Scholar 

  34. C. Dong, K. Sun, S. He, H. Wang, A hyperchaotic cycloid map with attractor topology sensitive to system parameters. Chaos Interdiscip. J. Nonlinear Sci. 31(8), 083132 (2021). https://doi.org/10.1063/5.0061519

    Article  MathSciNet  Google Scholar 

  35. Z. Canyan, Z. Lihua, Y. Wang, L. Jiasheng, L.-F. Mao, Periodic performance of the chaotic spreadspectrum sequence on finite precision * * This project was supported by the National Natural Science Foundation of China (60572075) and the Natural Science Researching Project for Jiangsu Universities (05KJD510177). J. Syst. Eng. Electron. 19, 672–678 (2008)

    Article  Google Scholar 

  36. D. He, C. He, L.G. Jiang, H.W. Zhu, G.R. Hu, Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans. Circuits Syst. Part I Fundam. Theory Appl. 900–906 (2001)

  37. Y. Peng, S. He, K. Sun, Chaos in the discrete memristor-based system with fractional-order difference, Results Phys. 104106, (2021)

  38. H. Natiq, S. Banerjee, M.R.M. Said, Cosine chaotification technique to enhance chaos and complexity of discrete systems. Eur. Phys. J. Spec. Top. 228(1), 185–194 (2019). https://doi.org/10.1140/epjst/e2019-800206-9

    Article  Google Scholar 

  39. N.K. Pareek, V. Patidar, K.K. Sud, Image encryption using chaotic logistic map. Image Vis. Comput. 24(9), 926–934 (2006)

    Article  Google Scholar 

  40. S. Borislav, K. Krasimir, Novel image encryption scheme based on Chebyshev polynomial and duffing map. Sci. World J. 2014, 283639 (2014)

    Google Scholar 

  41. C. Li, L.Y. Zhang, R. Ou, K.-W. Wong, S. Shu, Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn. 70(4), 2383–2388 (2012). https://doi.org/10.1007/s11071-012-0626-5

    Article  MathSciNet  Google Scholar 

  42. F. Yuan, Y. Deng, Y. Li, G. Chen, A cascading method for constructing new discrete chaotic systems with better randomness. Chaos 29(5), 053120 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  43. Y. Li, W.K.S. Tang, G. Chen, Generating hyperchaos via state feedback control. Int. J. Bifurc. Chaos 15(10), 3367–3375 (2005)

    Article  Google Scholar 

  44. C. Wu, K. Sun, Y. Xiao, A hyperchaotic map with multi-elliptic cavities based on modulation and coupling. Eur. Phys. J. Spec. Top. 230(7), 2011–2020 (2021). https://doi.org/10.1140/epjs/s11734-021-00126-9

    Article  Google Scholar 

  45. S. Zhang, J.H. Zheng, X. Wang, Z. Zeng, A novel no-equilibrium HR neuron model with hidden homogeneous extreme multistability. Chaos Solitons Fractals 145(4), 110761 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62061014); The Natural Science Foundation of Liaoning Province (2020-MS-274); The Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant Nos. LJKZ0545).

Author information

Authors and Affiliations

Authors

Contributions

Xintong Han designed and carried out experiments, data analyzed and manuscript wrote. Jun Mou and Hadi Jahanshahi made the theoretical guidance for this paper. Yinghong Cao and Fanling Bu improved the algorithm. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jun Mou or Fanling Bu.

Ethics declarations

Conflict of interest

No conflicts of interests about the publication by all authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Mou, J., Jahanshahi, H. et al. A new set of hyperchaotic maps based on modulation and coupling. Eur. Phys. J. Plus 137, 523 (2022). https://doi.org/10.1140/epjp/s13360-022-02734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02734-3

Navigation