Skip to main content
Log in

Heat transfer enhancement using CNT-coated needle electrodes in corona wind discharge system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Miniaturization and high integration of electronic devices demand effective removal of heat flux, which requires an efficient cooling system. Corona wind discharge system (CWDS) with CNT-coated electrode is an attractive option for efficient cooling with low power consumption. The flow and heat transfer characteristics of the CWDS with CNT-coated electrode were experimentally investigated in the present work. Water-assisted CVD apparatus was used for the coating of CNT on needles, with Iron as catalyst. The interaction between the electrodes was experimentally studied by flow visualization method. The heat transfer characteristics of the CWDS were estimated using Mach–Zehnder interferometry, which is a powerful nonintrusive method for the measurement of heat transfer. The effect of number of electrodes, input power and the distance between the electrodes were studied experimentally and the results were compared. CWDS with CNT-coated electrode decreases the initiation voltage while increasing the velocity by 140%. The power consumption was decreased by 60% and heat transfer coefficient was found to be enhanced by 12% for CNT-coated electrode, as compared to uncoated electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. D.H. Shin, J.S. Yoon, H.S. Ko, Experimental optimization of ion wind generator with needle to parallel plates for cooling device. Int. J. Heat Mass Transf. 84, 35–45 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.018

    Article  Google Scholar 

  2. Y. Zhang, L. Liu, Y. Chen, J. Ouyang, Characteristics of ionic wind in needle-to-ring corona discharge. J. Electrostat. 74, 15–20 (2015). https://doi.org/10.1016/j.elstat.2014.12.008

    Article  Google Scholar 

  3. I.Y. Chen, M.Z. Guo, K.S. Yang, C.C. Wang, Enhanced cooling for LED lighting using ionic wind. Int. J. Heat Mass Transf. 57, 285–291 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.015

    Article  Google Scholar 

  4. J. Qu, J. Zhang, M. Li, W. Tao, Heat dissipation of electronic components by ionic wind from multi-needle electrodes discharge: experimental and multi-physical analysis. Int. J. Heat Mass Transf. (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120406

    Article  Google Scholar 

  5. T.H. Wang, M. Peng, X.D. Wang, W.M. Yan, Investigation of heat transfer enhancement by electrohydrodynamics in a double-wall-heated channel. Int. J. Heat Mass Transf. 113, 373–383 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.079

    Article  Google Scholar 

  6. S. Wang, J.G. Qu, L.J. Kong, J.F. Zhang, Z.G. Qu, Numerical and experimental study of heat-transfer characteristics of needle-to-ring-type ionic wind generator for heated-plate cooling. Int. J. Therm. Sci. 139, 176–185 (2019). https://doi.org/10.1016/j.ijthermalsci.2019.01.032

    Article  Google Scholar 

  7. J. Wang, R. Fu, X. Hu, Experimental study on EHD heat transfer enhancement with a wire electrode between two divergent fins. Appl. Therm. Eng. 148, 457–465 (2019). https://doi.org/10.1016/j.applthermaleng.2018.11.058

    Article  Google Scholar 

  8. A.R. Mahmoudi, F. Pourfayaz, A. Kasaeian, A simplified model for estimating heat transfer coefficient in a chamber with electrohydrodynamic effect (corona wind). J. Electrostat. 93, 125–136 (2018). https://doi.org/10.1016/j.elstat.2018.04.007

    Article  Google Scholar 

  9. X. Li, D. Li, Q. Zhang, Y. Li, X. Cui, T. Lu, The detailed characteristics of positive corona current pulses in the line-to-plane electrodes. Plasma Sci. Technol. 20, 54014 (2018). https://doi.org/10.1088/2058-6272/aaa66b

    Article  ADS  Google Scholar 

  10. E. Moreau, P. Audier, N. Benard, Ionic wind produced by positive and negative corona discharges in air. J. Electrostat. 93, 85–96 (2018). https://doi.org/10.1016/j.elstat.2018.03.009

    Article  Google Scholar 

  11. J. Wang, R. Fu, X. Hu, Comparison of EHD-enhanced convection heat transfer in two divergent fins between positive and negative voltage polarities. J. Electrostat. (2019). https://doi.org/10.1016/j.elstat.2019.103358

    Article  Google Scholar 

  12. J. Feng, C. Wang, Q. Liu, C. Wu, Enhancement of heat transfer via corona discharge by using needle-mesh and needle-fin electrodes. Int. J. Heat Mass Transf. 130, 640–649 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.103

    Article  Google Scholar 

  13. J. Zhang, F.C. Lai, Heat transfer enhancement using corona wind generator. J. Electrostat. 92, 6–13 (2018). https://doi.org/10.1016/j.elstat.2018.01.001

    Article  Google Scholar 

  14. I.Y. Chen, C.J. Chen, C.C. Wang, Influence of electrode configuration on the heat transfer performance of a LED heat source. Int. J. Heat Mass Transf. 77, 795–801 (2014). https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.023

    Article  Google Scholar 

  15. D.H. Shin, D.K. Jang, D.K. Sohn, H.S. Ko, Control of boundary layer by ionic wind for heat transfer. Int. J. Heat Mass Transf. 131, 189–195 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.058

    Article  Google Scholar 

  16. A. Ongkodjojo-Ong, A.R. Abramson, N.C. Tien, Electrohydrodynamic microfabricated ionic wind pumps for thermal management applications. J. Heat Transf. 136, 061703 (2014). https://doi.org/10.1115/1.4026807

    Article  Google Scholar 

  17. J. Wang, T. Zhu, J. bo Wang, Y. xi Cai, X. hua Li, Optimization of a green solid-state fan for electronics cooling applications, Sustain. Energy Technol. Assessments. 39 (2020) 100703. https://doi.org/10.1016/j.seta.2020.100703.

  18. M.M. El-Bahy, M.A.A. El-Ata, Onset voltage of negative corona on dielectric-coated electrodes in air. J. Phys. D. Appl. Phys. 38, 3403–3411 (2005). https://doi.org/10.1088/0022-3727/38/18/013

    Article  ADS  Google Scholar 

  19. M. Abdel-Salam, H. Singer, A. Ahmed, Effect of the dielectric barrier on discharges in non-uniform electric fields. J. Phys. D. Appl. Phys. 34, 1219–1234 (2001). https://doi.org/10.1088/0022-3727/34/8/313

    Article  ADS  Google Scholar 

  20. Y.C. Bao, Y.X. Cai, J. Wang, Y.F. Shi, J.B. Wang, Experimental study on LED heat dissipation based on enhanced corona wind by graphene decoration. IEEE Trans. Plasma Sci. 47, 4121–4126 (2019). https://doi.org/10.1109/TPS.2019.2924287

    Article  ADS  Google Scholar 

  21. K. Kordás, G. Tóth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, P.M. Ajayan, Chip cooling with integrated carbon nanotube microfin architectures. Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2714281

    Article  Google Scholar 

  22. R. Vyas, P.J. Herr, T. Aloui, K. Horvath, M.P. Kirley, C.B. Parker, A.D. Keil, J.B. Carlson, J. Keogh, R.P. Sperline, M.B. Denton, M.L. Sartorelli, B.R. Stoner, M.E. Gehm, J.T. Glass, J.J. Amsden, Comparison of thermionic filament and carbon nanotube field emitter-based electron ionization sources in cycloidal coded aperture mass analyzers. Int. J. Mass Spectrom. 457, 116415 (2020). https://doi.org/10.1016/j.ijms.2020.116415

    Article  Google Scholar 

  23. S. Hong, J. Lee, K. Do, M. Lee, J.H. Kim, S. Lee, D.H. Kim, Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv. Funct. Mater. 27, 1–7 (2017). https://doi.org/10.1002/adfm.201704353

    Article  Google Scholar 

  24. W. Yishan, J. Li, J. Ye, X. Chen, H. Li, S. Huang, R. Zhao, W. Ou-Yang, Greener Corona Discharge for Enhanced Wind Generation with a Simple Dip-coated Carbon Nanotube Decoration. J. Phys. D. Appl. Phys. 50, 395304 (2017)

    Article  Google Scholar 

  25. J. Wang, T. Zhu, Y. Xi-Cai, Y. Chao-Bao, J. Bo-Wang, Comparison of the generation characteristics and application performance of nanomaterials-enhanced ionic wind. Int. Commun. Heat Mass Transf. (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104734

    Article  Google Scholar 

  26. D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima, Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 1–4 (2005). https://doi.org/10.1103/PhysRevLett.95.056104

    Article  Google Scholar 

  27. R. Smajda, J.C. Andresen, M. Duchamp, R. Meunier, S. Casimirius, K. Hernádi, L. Forró, A. Magrez, Synthesis and mechanical properties of carbon nanotubes produced by the water assisted CVD process. Phys. Status Solidi Basic Res. 246, 2457–2460 (2009). https://doi.org/10.1002/pssb.200982269

    Article  ADS  Google Scholar 

  28. T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima, K. Hata, Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett. 8, 4288–4292 (2008). https://doi.org/10.1021/nl801981m

    Article  ADS  Google Scholar 

  29. S.P. Patole, P.S. Alegaonkar, H.C. Lee, J.B. Yoo, Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon N. Y. 46, 1987–1993 (2008). https://doi.org/10.1016/j.carbon.2008.08.009

    Article  Google Scholar 

  30. Y.Y. Tsui, Y.X. Huang, C.C. Lan, C.C. Wang, A study of heat transfer enhancement via corona discharge by using a plate corona electrode. J. Electrostat. 87, 1–10 (2017). https://doi.org/10.1016/j.elstat.2017.02.003

    Article  ADS  Google Scholar 

  31. S. Ohyama, R. Ohyama, Ionic wind characteristics of an EHD micro gas pump constructed with needle-ring electrode system, Annu. Rep. Conf. Electr. Insul. Dielectr. Phenomena, CEIDP. (2011). https://doi.org/10.1109/CEIDP.2011.6232638.

  32. A. Niewulis, A. Berendt, J. Podliński, J. Mizeraczyk, Electrohydrodynamic flow patterns and collection efficiency in narrow wire-cylinder type electrostatic precipitator, J. Electrostat. 71 (2013). https://doi.org/10.1016/j.elstat.2013.02.002.

  33. G.A. Kallio, D.E. Stock, Flow Visualization Inside A Wire-Plate Electrostatic Precipitator, 26 (1990).

  34. J. Wang, X. Hu, X. Mo, Z. Sun, R. Fu, Flow and heat transfer characteristics of corona wind in two symmetric divergent fins. Int. J. Heat Mass Transf. 160, 1–12 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120210

    Article  Google Scholar 

  35. J.R. Lee, E. Von Lau, Convective heat transfer enhancement of ionic wind under variable air pressures. Int. J. Therm. Sci. 160, 106657 (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106657

    Article  Google Scholar 

  36. M. Mirzaei, M. Saffar-Avval, Enhancement of convection heat transfer using EHD conduction method. Exp. Therm. Fluid Sci. 93, 108–118 (2018). https://doi.org/10.1016/j.expthermflusci.2017.12.022

    Article  Google Scholar 

  37. M.E. Franke, K.E. Hutson, Effects of Corona Discharge on Free-Convection Heat transfer Inside a Vertical Hollow Cylinder. Heat Transf. 106, 346–351 (1984)

    Article  Google Scholar 

  38. L.E. Hogue, M.E. Franke, Electrostatic cooling of a horizontal cylinder. J. Heat Transfer. 113, 544–548 (1991). https://doi.org/10.1115/1.2910597

    Article  ADS  Google Scholar 

  39. S.R. Mahmoudi, K. Adamiak, P. Castle, M. Ashjaee, The effect of corona discharge on free convection heat transfer from a horizontal cylinder. Exp. Therm. Fluid Sci. 34, 528–537 (2010). https://doi.org/10.1016/j.expthermflusci.2009.11.006

    Article  Google Scholar 

  40. M. Mohan, Convective heat transfer studies in dilute alumina and silica nanofluids flowing through a channel using Mach-Zehnder interferometry, (2020).

  41. A. Vyas, A. Yadav, A. Srivastava, Flow and heat transfer measurements in the laminar wake region of semi- circular cylinder embedded within a rectangular channel. Int. Commun. Heat Mass Transf. 116, 104692 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104692

    Article  Google Scholar 

  42. A. Krishnan, A.R. Ganesan, A. Mani, Interferometric analysis of flow around a horizontal tube falling film evaporator for MED systems. Int. J. Therm. Sci. 161, 106745 (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106745

    Article  Google Scholar 

  43. N. Sheet, Interferometric Study of the Heat Transfer Phenomena Induced by Rapid Heating of Nickel Sheet, (2020).

  44. J. Wang, T. Zhu, Y. xi Cai, J. fei Zhang, J. bo Wang, Review on the recent development of corona wind and its application in heat transfer enhancement, Int. J. Heat Mass Transf. 152 (2020) 119545. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119545.

  45. D. Naylor, Recent developments in the measurement of convective heat transfer rates by laser interferometry. Int. J. Heat Fluid Flow. 24, 345–355 (2003). https://doi.org/10.1016/S0142-727X(03)00021-3

    Article  Google Scholar 

  46. M. Joseph, V. Antony, V. Sajith, Characterisation of heat dissipation from PCM based heat sink using Mach-Zehnder Interferometry. Heat Mass Transf. Und Stoffuebertragung. (2021). https://doi.org/10.1007/s00231-021-03101-1

    Article  Google Scholar 

  47. D. Naylor, N. Duarte, Direct temperature gradient measurement using interferometry. Exp. Heat Transf. 12, 279–294 (1999). https://doi.org/10.1080/089161599269609

    Article  ADS  Google Scholar 

  48. J.P.Holman, Heat Transfer, Tata McGraw-Hill Education, 2008.

  49. B. Kwon, T. Foulkes, T. Yang, N. Miljkovic, W.P. King, Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles, IEEE Trans. Components, Packag. Manuf. Technol. 10 (2020) 220–229. https://doi.org/10.1109/TCPMT.2019.2936852.

  50. J. Wang, Y. jun Liu, T. Zhu, Y. qiang Chen, J. bo Wang, Magnetic field enhanced ionic wind for environment-friendly improvement and thermal management application, Appl. Therm. Eng. 194 (2021) 117054. https://doi.org/10.1016/j.applthermaleng.2021.117054.

  51. E.T. Ring, I. Wind, Enhanced cooling of LED filament bulbs using an embedded tri-needle/ring ionic wind device. Energies 13, 1–20 (2020)

    Google Scholar 

  52. J. Ye, J. Li, X. Chen, S. Huang, W. Ou-Yang, Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration. Chinese Phys. B. 28, 095202 (2019)

    Article  ADS  Google Scholar 

  53. J. Wang, Y. Xi Cai, Y. Chao Bao, J. Bo Wang, X. Hua Li, Enhanced ionic wind generation by graphene for LED heat dissipation. Int. J. Energy Res. 43, 3746–3755 (2019). https://doi.org/10.1002/er.4532

    Article  Google Scholar 

  54. X. Yao, N. Jiang, B. Peng, H. Guo, N. Lu, K. Shang, J. Li, Y. Wu, Characteristics of a corona discharge ignited by a MgO/NiO/Ni sandwich cathode with high secondary electron emission for VOC degradation. J. Phys. D. Appl. Phys. (2018). https://doi.org/10.1088/1361-6463/aadddd

    Article  Google Scholar 

  55. J. Wang, Y. Xi Cai, X. Hua Li, X. Dong Zhao, J. Wang, Y. Fei Shi, Y. Xi Shi, Experimental investigation of high-power light-emitting diodes’ thermal management by ionic wind. Appl. Therm. Eng. 122, 49–58 (2017). https://doi.org/10.1016/j.applthermaleng.2017.04.084

    Article  Google Scholar 

  56. J. Wang, Y. Xi Cai, X. Hua Li, Y. Fei Shi, Y. Chao Bao, Electrically-induced ionic wind flow distribution and its application for LED cooling. Appl. Therm. Eng. 138, 346–353 (2018). https://doi.org/10.1016/j.applthermaleng.2018.04.091

    Article  Google Scholar 

  57. J. Wang, T. Zhu, Y. Xi Cai, J. Bo Wang, J. Wang, Development and application of a solid-state fan for enhanced heat dissipation. Appl. Therm. Eng. 169, 114922 (2020). https://doi.org/10.1016/j.applthermaleng.2020.114922

    Article  Google Scholar 

  58. D.H. Shin, S.H. Baek, H.S. Ko, Analysis of counter flow of corona wind for heat transfer enhancement. Heat Mass Transf. Und Stoffuebertragung. 54, 841–854 (2018). https://doi.org/10.1007/s00231-017-2183-4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Sajith.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vibin Antony, P., Joseph, M., Ozden, S. et al. Heat transfer enhancement using CNT-coated needle electrodes in corona wind discharge system. Eur. Phys. J. Plus 137, 524 (2022). https://doi.org/10.1140/epjp/s13360-022-02723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02723-6

Navigation