Skip to main content

Advertisement

Log in

Investigating the dynamical models of cosmology with recent observations and upcoming gravitational-wave data

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explore and compare the capabilities of the recent observations of standard cosmological probes and the future observations of gravitational-wave (GW) standard sirens on constraining cosmological parameters. It is carried out in the frameworks of two typical dynamical models of cosmology, i.e., the \(\omega _0\omega _a\)CDM model with \(\omega (z) = \omega _0 +\omega _a*z/(1+z)\), and the \(\xi \)-index model with \(\rho _X\propto \rho _ma^{\xi }\), where \(\omega (z)\) is the dark energy equation of state, and \(\rho _X\) and \(\rho _m\) are the energy densities of dark energy and matter, respectively. In the cosmological analysis, the employed data sets include the recent observations of the standard cosmological probes, i.e., Type Ia supernovae (SNe Ia), baryon acoustic oscillation (BAO) and cosmic microwave background (CMB), and also the mock GW standard siren sample with 1000 merging neutron star events anticipated from the third-generation detectors. In the scenarios of both \(\omega _0\omega _a\)CDM and \(\xi \)-index models, it turns out that the mock GW sample can reduce the uncertainty of the Hubble constant \(H_0\) by about 50% relative to that from the joint SNe+BAO+CMB sample; nevertheless, the SNe+BAO+CMB sample demonstrates better performance on limiting other parameters. Furthermore, the Bayesian evidence is applied to compare the dynamical models with the \(\Lambda \)CDM model. The Bayesian evidences computed from the SNe+BAO+CMB sample reveal that the \(\Lambda \)CDM model is the most supported one; moreover, the \(\omega _0\omega _a\)CDM model is more competitive than the \(\xi \)-index model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data underlying this paperwill be shared on reasonable request to the corresponding author.]

Notes

  1. https://sdss3.org/science/boss_publications.php.

  2. https://wiki.cosmos.esa.int/planckpla/index.php.

  3. While the space detector LISA is good at detecting events of coalescing supermassive black hole binaries at large redshift.

References

  1. D. Huterer, D.L. Shafer, Dark energy two decades after: observables, probes, consistency tests. Rep. Prog. Phys. 81, 016901 (2018)

    Article  ADS  Google Scholar 

  2. P.J. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P. Bull et al., Beyond \(\Lambda \)CDM: problems, solutions, and the road ahead. Phys. Dark Univ. 12, 56 (2016)

    Article  Google Scholar 

  4. J.S. Bullock, M. Boylan-Kolchin, Small-Scale Challenges to the \(\Lambda \)CDM Paradigm. ARAA 55, 343 (2017)

    Article  ADS  Google Scholar 

  5. S. Weinberg, The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. S.M. Carroll, W.H. Press, E.L. Turner, The cosmological constant. ARAA 30, 499 (1992)

    Article  ADS  Google Scholar 

  7. S. Weinberg, The cosmological constant problems, arXiv:astro-ph/0005265

  8. A. Vilenkin, Cosmological constant problems and their solutions, arXiv:hep-th/0106083

  9. J. Garriga, M. Livio, A. Vilenkin, The cosmological constant and the time of its dominance. Phys. Rev. D 61, 023503 (1999)

    Article  ADS  Google Scholar 

  10. J. Garriga, A. Vilenkin, Solutions to the cosmological constant problems. Phys. Rev. D 64, 023517 (2001)

    Article  ADS  Google Scholar 

  11. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. L. Amendola, Coupled quintessence, arXiv:astro-ph/9908023v1

  13. G. Caldera-Cabral, R. maartens, A.Urena-Lopez, Dynamics of interacting dark energy, arXiv:08121827v2

  14. M. Chevallier, D. Polarski, Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 10, 213 (2001)

    Article  ADS  Google Scholar 

  15. E.V. Linder, Exploring the expansion history of the universe. Phys. Rev. Lett. 90, 091301 (2003)

    Article  ADS  Google Scholar 

  16. N. Dalal et al., Testing the cosmic coincidence problem and the nature of dark energy. Phys. Rev. Lett. 87, 141302 (2001)

    Article  ADS  Google Scholar 

  17. D. Scolnic, et al., The complete light-curve sample of spectroscopically confiAstrophys. J.rmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859 101 (2018)

  18. F. Beutler et al., The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 416, 3017 (2011)

    Article  ADS  Google Scholar 

  19. A.J. Ross et al., The clustering of the SDSS DR7 main Galaxy sample - I. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc. 449 835 (2015)

  20. S. Alam et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 470, 2617 (2017)

    Article  ADS  Google Scholar 

  21. N. Aghanim et al., Planck 2018 results. VI. Cosmol. Parameter. 641, A6 (2020)

    Google Scholar 

  22. B. Schutz, Determining the Hubble constant from gravitational wave observations. Nature 323, 310–311 (1986)

    Article  ADS  Google Scholar 

  23. B.P. Abbott et al., Nature 551, 85–88 (2017)

    Article  ADS  Google Scholar 

  24. R.-G. Cai, T. Yang, Estimating cosmological parameters by the simulated data of gravitational waves from the Einstein Telescope. Phys. Rev. D 95, 4 (2017)

    MathSciNet  Google Scholar 

  25. X.-N.Zhang, et al., Improving cosmological parameter estimation with the future gravitational-wave standard siren observation from the Einstein Telescope, Phys. Rev. D 99 063510 (2019)

  26. J.-F. Zhang et al., Cosmological parameter estimation with future gravitational wave standard siren observation from the Einstein Telescope. JCAP 09, 068 (2019)

    Article  ADS  Google Scholar 

  27. M.-H. Du, L.-X. Xu, How will our knowledge of short gamma-ray bursts affect the distance measurement of binary neutron stars? Sci. China-Phys. Mech. Astron. 65, 219811 (2022)

    Article  ADS  Google Scholar 

  28. X.-L. Li, et al., Testing and selecting cosmological models with ultra-compact radio quasars, arXiv:1708.08867

  29. B. Liu et al., Complementary constraints on dark energy equation of state from strongly lensed gravitational wave. MNRAS 487, 1980–1985 (2019)

    Article  ADS  Google Scholar 

  30. Z.-W. Zhao et al., Cosmological parameter estimation for dynamical dark energy models with future fast radio burst observations. ApJ 903, 83 (2020)

    Article  ADS  Google Scholar 

  31. J.-Z. Qi, et al., Using a multi-messenger and multi-wavelength observational strategy to probe the nature of dark energy through direct measurements of cosmic expansion history, arXiv:2102.01292

  32. D. Pavón, S. Sen, W. Zimdahl, CMB constraints on interacting cosmological models. JCAP 5, 009 (2004)

    Article  ADS  Google Scholar 

  33. Z.K. Guo, N. Ohta, S. Tsujikawa, Probing the coupling between dark components of the universe. Phys. Rev. D 76, 023508 (2007)

    Article  ADS  Google Scholar 

  34. Y. Chen et al., Using a phenomenological model to test the coincidence problem of dark energy. Astrophys. J. 711, 439 (2010)

    Article  ADS  Google Scholar 

  35. S. Cao, N. Liang, Z.-H. Zhu, Testing the phenomenological interacting dark energy with observational H(z) data. Mon. Not. R. Astron. Soc. 416, 1099 (2011)

    Article  ADS  Google Scholar 

  36. M.-J. Zhang, W.-B. Liu, Observational constraint on the interacting dark energy models including the Sandage-Loeb test. EPJC 74, 2863 (2014)

    Article  ADS  Google Scholar 

  37. D. Branch, D.L. Miller, Type IA supernovae as standard candles. APJL 405, L5 (1993)

    Article  ADS  Google Scholar 

  38. A.G. Riess, W.H. Press, R.P. Kirshner, Using Type IA supernova light curve shapes to measure the Hubble constant. APJL 438, L17 (1995)

    Article  ADS  Google Scholar 

  39. A.V. Filippenko, Type Ia supernovae and cosmology. ASSL 332, 97 (2005)

    ADS  Google Scholar 

  40. J. Guy et al., SALT: a spectral adaptive light curve template for type Ia supernovae. Astron. Astrophys. 443, 781 (2005)

    Article  ADS  Google Scholar 

  41. J. Guy et al., SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11 (2007)

    Article  ADS  Google Scholar 

  42. A. Conley et al., SiFTO: an empirical method for fitting SNe Ia light curves. Astrophys. J. 681, 482 (2008)

    Article  ADS  Google Scholar 

  43. M. Betoule et al., Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014)

    Article  Google Scholar 

  44. R. Kessler, D. Scolnic, Correcting Type Ia supernova distances for selection biases and contamination in photometrically identified samples. Astrophys. J. 836, 56 (2017)

    Article  ADS  Google Scholar 

  45. R. Giostri et al., From cosmic deceleration to acceleration: new constraints from SN Ia and BAO/CMB. JCAP 03, 027 (2012)

    Article  ADS  Google Scholar 

  46. D.J. Eisenstein, W. Hu, Astrophys. J. 496, 605 (1998)

    Article  ADS  Google Scholar 

  47. D.J. Eisenstein et al., Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  48. J. Ryan, Y. Chen, B. Ratra, Baryon acoustic oscillation, Hubble parameter, and angular size measurement constraints on the Hubble constant, dark energy dynamics, and spatial curvature. Mon. Not. R. Astron. Soc. 488, 3844 (2019)

    Article  ADS  Google Scholar 

  49. G. Hinshaw et al., Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013)

    Article  ADS  Google Scholar 

  50. Y. Akrami, et al., Planck 2018 results. IV. Diffuse component separation, Astron. Astrophys. 641 74 (2020)

  51. N. Aghanim, et al., Planck 2018 results. V. CMB power spectra and likelihoods, Astron. Astrophys. 641 92 (2020)

  52. E. Belgacem et al., Cosmology and dark energy from joint gravitational wave-GRB observations. JCAP 08, 015 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  53. T.G.F. Li, Extracting physics from gravitational waves, Spring Theses (2015)

  54. J.-F. Zhang, H.-Y. Dong, J.-Z. Qi, X. Zhang, Extracting physics from gravitational waves. EPJC 80, 217 (2020)

    Article  ADS  Google Scholar 

  55. X.N. Zhang, L.F. Wang, J.F. Zhang, X. Zhang, Phys. Rev. D 99, 063510 (2019)

    Article  ADS  Google Scholar 

  56. M. Du, W. Yang, L. Xu, S. Pan, D.F. Mota, Phys. Rev. D 100, 043535 (2019)

    Article  ADS  Google Scholar 

  57. R.G. Cai, T. Yang, Phys. Rev. D 95, 044024 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  58. W. Zhao, C. Van Den Broeck, D. Baskaran, T.G.F. Li, Phys. Rev. D 83, 023005 (2011)

    Article  ADS  Google Scholar 

  59. S. Nissanke et al., Exploring short gamma-ray bursts as gravitational-wave standard sirens. ApJ 725, 496–514 (2010)

    Article  ADS  Google Scholar 

  60. X.-L. Fan, C. Messenger, I.S. Heng, Probing intrinsic properties of short gamma-ray bursts with gravitational waves. Phys. Rev. Lett. 119, 181102 (2017)

    Article  ADS  Google Scholar 

  61. A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002)

    Article  ADS  Google Scholar 

  62. R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology. Contemp. Phys. 49, 71 (2008)

    Article  ADS  Google Scholar 

  63. G. Efstathiou, Limitations of Bayesian evidence applied to cosmology. Mon. Not. R. Astron. Soc. 388, 1314 (2008)

    ADS  Google Scholar 

  64. M. Szydlowski et al., AIC, BIC, Bayesian evidence against the interacting dark energy model. Eur. Phys. J. C 75, 5 (2015)

    Article  ADS  Google Scholar 

  65. A. Heavens, et al., Marginal Likelihoods from Monte Carlo Markov Chains, arXiv:1704.03472

Download references

Acknowledgements

We would like to thank Minghui Du for supplying the mock catalog of BNS-SGRB GW events and also for some helpful suggestions on the use of the mock sample. This work has been supported by the National Natural Science Foundation of China (Nos. 11988101, 12021003, 12033008, 11633001, 11920101003, 11703034, 11773032 and 11573031), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB23000000), the Interdiscipline Research Funds of Beijing Normal University, and the K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Chen or Zong-Hong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Chen, Y., Xu, T. et al. Investigating the dynamical models of cosmology with recent observations and upcoming gravitational-wave data. Eur. Phys. J. Plus 137, 509 (2022). https://doi.org/10.1140/epjp/s13360-022-02718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02718-3

Navigation