Skip to main content
Log in

Time-dependent numerical investigation of 3-hydroxypropionic acid extraction using a microporous membrane contactor

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Extraction process of acidic materials inside the microporous membrane contactors has been an interesting subject all over the world. In this paper, a novel time-dependent two-dimensional (2D) mathematical model is aimed to be developed to simulate the 3-hydroxypropionic acid (3-HP) extraction from an aqueous solution through a microporous membrane wall into an organic phase. The developed model is taken into consideration both axial as well as radial diffusion in the tube, membrane and shell sections of the extractor, and the structure is simplified to a single hollow fibre. It was found good agreement between experimental results and modelling values in terms of 3-HP extraction as function of time. About 100% 3-HP extraction was obtained after 180 min for all three different carriers’ concentration. The rate of extraction was higher at the beginning, while it was decreased with time progress in the system. The main resistance for 3-HP mass transfer was obtained at the membrane side. Also, there was slight resistance for mass transfer in the tube side at time of 1 and 20 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data are available within the manuscript.

References

  1. T. Thi Nguyen, S. Lama, S. Kumar Ainala, M. Sankaranarayanan, A. Singh Chauhan, J. Rae Kim, S. Park, Development of Pseudomonas asiatica as a host for the production of 3-hydroxypropionic acid from glycerol. Bioresour. Technol. 329, 124867 (2021)

    Article  Google Scholar 

  2. V. Kumar, S. Ashok, S. Park, Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol. Adv. 31, 945–961 (2013)

    Article  Google Scholar 

  3. G. Burgé, F. Chemarin, M. Moussa, C. Saulou-Bérion, F. Allais, H.-É. Spinnler, V. Athès, Reactive extraction of bio-based 3-hydroxypropionic acid assisted by hollow-fiber membrane contactor using TOA and Aliquat 336 in n-decanol. J. Chem. Technol. Biotechnol. 91, 2705–2712 (2016)

    Article  Google Scholar 

  4. F.L.S. Sebastianes, N. Cabedo, N.E. Aouad, A.M.M.P. Valente, P.T. Lacava, J.L. Azevedo, A.A. Pizzirani-Kleiner, D. Cortes, 3-Hydroxypropionic acid as an antibacterial agent from endophytic fungi Diaporthe phaseolorum. Curr. Microbiol. 65, 622–632 (2012)

    Article  Google Scholar 

  5. L.N. Rodrigues, K.K. Sirkar, K.R. Weisbrod, J.C. Ahern, U. Beuscher, Porous hydrophobic-hydrophilic Janus membranes for nondispersive membrane solvent extraction. J. Membr. Sci. 637, 119633 (2021)

    Article  Google Scholar 

  6. M. Ghadiri, A. Hemmati, A.T. Nakhjiri, S. Shirazian, Modelling tyramine extraction from wastewater using a non-dispersive solvent extraction process. Environ. Sci. Pollut. Res. 27, 39068–39076 (2020)

    Article  Google Scholar 

  7. W.S.W. Ho, K.K. Sirkar, Membrane Handbook, (Part X, New York, 1992)

    Book  Google Scholar 

  8. Q.R. Kong, Y.W. Cheng, L.J. Wang, X. Li, Non-dispersive solvent extraction of p-toluic acid from purified terephthalic acid plant wastewater with p-xylene as extractant. J. Zhejiang Univ.-Sci. A 17, 828–840 (2016)

    Article  Google Scholar 

  9. C.B. Patil, S.A. Ansari, P.K. Mohapatra, V. Natarajan, V.K. Manchanda, Non-dispersive solvent extraction and stripping of neodymium (III) using a hollow fiber contactor with TODGA as the extractant. Sep. Sci. Technol. 46, 765–773 (2011)

    Article  Google Scholar 

  10. D.N. Ambare, S.A. Ansari, M. Anitha, P. Kandwal, D.K. Singh, H. Singh, P.K. Mohapatra, Non-dispersive solvent extraction of neodymium using a hollow fiber contactor: mass transfer and modeling studies. J. Membr. Sci. 446, 106–112 (2013)

    Article  Google Scholar 

  11. F.J. Alguacil, P. Navarro, Non-dispersive solvent extraction of Cu(II) by LIX 973N from ammoniacal/ammonium carbonate aqueous solutions. Hydrometallurgy 65, 77–82 (2002)

    Article  Google Scholar 

  12. N.S. Williams, M.B. Ray, H.G. Gomaa, Removal of ibuprofen and 4-isobutylacetophenone by non-dispersive solvent extraction using a hollow fibre membrane contactor. Sep. Purif. Technol. 88, 61–69 (2012)

    Article  Google Scholar 

  13. A. Gabelman, S.-T. Hwang, Hollow fiber membrane contactors. J. Membr. Sci. 159, 61–106 (1999)

    Article  Google Scholar 

  14. A.T. Nakhjiri, A. Heydarinasab, CFD analysis of CO2 sequestration applying different absorbents inside the microporous PVDF hollow fiber membrane contactor. Period. Polytech. Chem. Eng. 64, 135–145 (2020)

    Article  Google Scholar 

  15. M. Ghadiri, A. Marjani, S. Shirazian, Mathematical modeling and simulation of CO2 stripping from monoethanolamine solution using nano porous membrane contactors. Int. J. Greenhouse Gas Control 13, 1–8 (2013)

    Article  Google Scholar 

  16. Y. Cao, Z.U. Rehman, N. Ghasem, M. Al-Marzouqi, N. Abdullatif, A.T. Nakhjiri, M. Ghadiri, M. Rezakazemi, A. Marjani, M. Pishnamazi, Intensification of CO2 absorption using MDEA-based nanofluid in a hollow fibre membrane contactor. Sci. Rep. 11, 1–12 (2021)

    Article  Google Scholar 

  17. M. Ghadiri, A. Marjani, S. Shirazian, Development of a mechanistic model for prediction of CO2 capture from gas mixtures by amine solutions in porous membranes. Environ. Sci. Pollut. Res. 24, 14508–14515 (2017)

    Article  Google Scholar 

  18. A.T. Nakhjiri, A. Heydarinasab, Computational simulation and theoretical modeling of CO2 separation using EDA, PZEA and PS absorbents inside the hollow fiber membrane contactor. J. Ind. Eng. Chem. 78, 106–115 (2019)

    Article  Google Scholar 

  19. S. Yang, S. Abdalkareem Jasim, D. Bokov, S. Chupradit, A.T. Nakhjiri, A.S. El-Shafay, Membrane distillation technology for molecular separation: a review on the fouling, wetting and transport phenomena. J. Mol. Liq. 349, 118115 (2022)

    Article  Google Scholar 

  20. B. Swain, S. Sarkar, K.K. Singh, A.K. Pabby, Computational modelling of non-dispersive solvent extraction of uranium in hollow fiber contactor operated in recycle mode. Chem. Eng. Process. Process Intensific. 161, 108300 (2021)

    Article  Google Scholar 

  21. R. Bird, W. Stewart, E. Lightfoot, Transport phenomena (Wiley, Hoboken, NJ, 2002)

    Google Scholar 

  22. B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The properties of gases and liquids (Mcgraw-hill, New York, 2001)

    Google Scholar 

  23. A. Marjani, A.T. Nakhjiri, M. Pishnamazi, S. Shirazian, Evaluation of potassium glycinate, potassium lysinate, potassium sarcosinate and potassium threonate solutions in CO2 capture using membranes. Arab. J. Chem. 14, 102979 (2021)

    Article  Google Scholar 

  24. M. Babanezhad, A.T. Nakhjiri, A. Marjani, S. Shirazian, Pattern recognition of the fluid flow in a 3D domain by combination of Lattice Boltzmann and ANFIS methods. Sci. Rep. 10, 1–13 (2020)

    Article  Google Scholar 

  25. A.T. Nakhjiri, A. Heydarinasab, O. Bakhtiari, T. Mohammadi, Experimental investigation and mathematical modeling of CO2 sequestration from CO2/CH4 gaseous mixture using MEA and TEA aqueous absorbents through polypropylene hollow fiber membrane contactor. J. Membr. Sci. 565, 1–13 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Taghvaie Nakhjiri or Mahdi Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Nakhjiri, A.T., Sarkar, S.M. et al. Time-dependent numerical investigation of 3-hydroxypropionic acid extraction using a microporous membrane contactor. Eur. Phys. J. Plus 137, 494 (2022). https://doi.org/10.1140/epjp/s13360-022-02709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02709-4

Navigation