Skip to main content

Advertisement

Log in

Analysis on energy density difference between linearly and circularly polarized electromagnetic waves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we shall demonstrate that both the time-rate of change of electromagnetic energy density and time-dependent Poynting vector of a circularly polarized electromagnetic wave (CPEMW) are significantly different from those of a linearly polarized electromagnetic wave (LPEMW), respectively. Subsequently, time-averaged stored energy density (TASED) of a CPEMW is also significantly different from that of a LPEMW. Our work may provide a new angle of view to deepen the understanding of characteristics of energy conversion and conservation of various electromagnetic waves, including linearity and nonlinearity, which my be helpful to provide possible way to experimentally test applicability of different expressions of TASED and related theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  2. K.Q. Zhang, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, Berlin, 1998)

    Book  Google Scholar 

  3. D.J. White, P.L. Overfelt, Poynting’s theorem and their relationship to antenna power, Q, and bandwidth (NAWCWPNS Technical Publication, 1999), p. 8419

    Book  Google Scholar 

  4. R.W. Ziolkowski, Phys. Rev. E 63, 046604 (2001)

    Article  ADS  Google Scholar 

  5. A. Welters, Y. Avniel, S.G. Johnson, Phys. Rev. B 90, 023847 (2014)

    Article  ADS  Google Scholar 

  6. J.M. Zhao, Z.M. Zhang, J. Quant Spectrosc Radiat Transfer 151, 49 (2015)

    Article  ADS  Google Scholar 

  7. R. Ruppin, Phys. Lett. A 299, 309 (2002)

    Article  ADS  Google Scholar 

  8. T.J. Cui, J.A. Kong, Phys. Rev. B 70, 205106 (2004)

    Article  ADS  Google Scholar 

  9. A.D. Boardman, K. Marinov, Phys. Rev. B 73, 165110 (2006)

    Article  ADS  Google Scholar 

  10. P.G. Luan, Curr. Comput.-Aided Drug Des. 10, 863 (2020)

    Google Scholar 

  11. Shivanand, K.J. Webb, Optics Express 20, 11370 (2012)

    Article  ADS  Google Scholar 

  12. N. Sun, J.W. Chen, D.M. Tang, Eur. Phys. J. D 69, 219 (2015)

    Article  ADS  Google Scholar 

  13. I. Semchenko, A. Balmakou, S. Khakhomov, S. Tretyakov, Phys. Rev. B 97, 014432 (2018)

    Article  ADS  Google Scholar 

  14. J. Askne, B. Lind, Phys. Rev. A 2, 2335 (1970)

    Article  ADS  Google Scholar 

  15. F.D. Nunes, T.C. Vasconcelos, M. Bezerra, J. Weiner, J. Opt. Soc. Am. B 28, 1544 (2011)

    Article  ADS  Google Scholar 

  16. Y. Liao, S. Zhang, Z. Tang, X. Liu, K. Huang, RSC Adv. 7, 26546 (2017)

    Article  ADS  Google Scholar 

  17. Y.Y. Dai, Y. Xuanyuan, J.W. Chen, Optik 206, 163999 (2020)

    Article  ADS  Google Scholar 

  18. J.W. Chen, Y. Xuanyuan, Y.Y. Dai, Optik 207, 163493 (2020)

    Article  ADS  Google Scholar 

  19. J.W. Chen, Y.Y. Dai, Y. Xuanyuan, Optik 242, 165756 (2021)

    Article  ADS  Google Scholar 

  20. N.F. Yu, P. Genvet, M.A. Kats et al., Science 334, 333 (2011)

    Article  ADS  Google Scholar 

  21. B. Xu, C. Wu et al., Op. Mater. Express 6, 3940 (2016)

    Article  ADS  Google Scholar 

  22. G. Rikken, B. Tiggelen, Phys. Rev. Lett. 78, 847 (1997)

    Article  ADS  Google Scholar 

  23. Y. Wang, W. Dou, H. Meng, Opt. Exp. 22, 7821 (2014)

    Article  Google Scholar 

  24. X.Y. Gao, Y.G. Guo, W.R. Shan, Appl. Math. Lett. 120, 107161 (2021)

    Article  Google Scholar 

  25. M. Wang, B. Tian, C.C. Hu, S.H. Liu, Appl. Math. Lett. 119, 106936 (2021)

    Article  Google Scholar 

  26. D.Y. Yang, B. Tian, Q.X. Qu, C.R. Zhang, S.S. Chen, C.C. Wei, Chaos Solitons Fract. 150, 110487 (2021)

    Article  Google Scholar 

  27. Y.Y. Dai, Y. Xuanyuan, and J.W. Chen, J. Opt. (2021). https://doi.org/10.1007/s12596-021-00778-9

    Article  Google Scholar 

  28. X.Y. Gao, Y.G. Guo, W.R. Shan, Commun. Theor. Phys. 72, 095002 (2020)

    Article  ADS  Google Scholar 

  29. X.Y. Gao, Y.G. Guo, W.R. Shan, Chaos Solitons Fract. 150, 111066 (2021)

    Article  Google Scholar 

  30. X.Y. Gao, Y.G. Guo, W.R. Shan, Eur. Phys. J. Plus 136, 893 (2021)

    Article  Google Scholar 

  31. Y. Shen, B. Tian, Appl. Math. Lett. 122, 107301 (2021)

    Article  Google Scholar 

  32. X.T. Gao, B. Tian, Y. Shen, C.H. Feng, Chaos Solitons Fract. 151, 111222 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangwei Chen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., She, J. Analysis on energy density difference between linearly and circularly polarized electromagnetic waves. Eur. Phys. J. Plus 137, 502 (2022). https://doi.org/10.1140/epjp/s13360-022-02697-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02697-5

Navigation