Skip to main content
Log in

An analytical approach to the mass spectrum of heavy tetraquarks in dimeson model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Hadron spectroscopy is a powerful tool for testing the quark model of the standard model and also for the search of new physics. In this regard, the study of exotic hadrons including tetraquarks and pentaquarks has attracted a lot of interest during recent years. Motivated by the LHCb-group discovery of exotic hadrons in the range 6.2–6.9 GeV, in this work, we study the mass spectra of heavy tetraquarks in their ground and excited states through dimeson model. Following this model, we consider a tetraquark as a bound state of the meson-antimeson molecule in which mesons/antimesons are considered as thick points which interact through the Hellmann potential which is a superposition of the Coulomb and the Yukawa potential. The one pion exchange potential along with the spin–spin interaction is also incorporated in the mass calculations, perturbatively. The dimeson model reduces a four-body problem to a two-body one which enables us to study the mass spectrum of tetraquarks via the Bethe–Salpeter wave equation, analytically. We will present our predictions for observed tetraquarks, as well as upcoming ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The needed data can be found in the text and references of this paper.]

References

  1. M. Gell-Mann, Phys. Lett. 8, 214 (1964)

    Article  ADS  Google Scholar 

  2. S.M. Moosavi Nejad, A. Armat, Few Body Syst. 61, 4–31 (2020)

  3. S.M. Moosavi Nejad, A. Armat, Eur. Phys. J. A 56(11), 287 (2020)

  4. S.K. Choi et al., Phys. Rev Lett. 91, 262001 (2003)

  5. R. Aaij et al. [LHCb Collaboration], Sci. Bull. 65, 1983 (2020)

  6. M.N. Anwar, J. Ferretti, F.-K. Guo, E. Santopinto, B.-S. Zou, Eur. Phys. J. C 78, 647 (2018)

    Article  ADS  Google Scholar 

  7. Z.-G. Wang, Eur. Phys. J. C 77, 432 (2017)

    Article  ADS  Google Scholar 

  8. Y. Bai, S. Lu, J. Osborne. Phys. Lett. B 798 (2019) 134930.

  9. M. Karliner, S. Nussinov, J.L. Rosner. Phys. Rev. D 95, 034011 (2017)

  10. M.A. Bedolla, J. Ferretti, C.D. Roberts, E. Santopinto, Eur. Phys. J. C 80, 1004 (2020)

    Article  ADS  Google Scholar 

  11. A.V. Berezhnoy, A.V. Luchinsky, A.A. Novoselov. Phys. Rev. D 86, 034004 (2012)

  12. W. Chen, H.-X. Chen, X. Liu, T.G. Steele, S.-L. Zhu, Phys. Lett. B 773, 247 (2017)

    Article  ADS  Google Scholar 

  13. A. Esposito, A.D. Polosa, Eur. Phys. J. C 78, 782 (2018)

    Article  ADS  Google Scholar 

  14. T. Kawanai, S. Sasaki. Phys. Rev. D 85, 091503 (2012)

  15. G. Yang, J. Ping, L. He, Q. Wang. arXiv: 2006.13756 [hep-ph]

  16. Y. Chargui, Eur. Phys. J. Plus 133, 543 (2018)

    Article  Google Scholar 

  17. T. Barnes, S. Godfrey, E.S. Swanson, Phys. Rev. D 72, 054026 (2005)

  18. F. Giannuzzi, Phys. Rev.D 99, 094006 (2019)

  19. A. Kumar Rai, D.P. Rathaud, Eur. Phys. J. C 75, 62 (2015)

  20. G. Yang, J. Ping, J. Segovia, Symmetry 12(11), 1869 (2020)

  21. S. Rahmani, H. Hassanabadi, Chin. Phys. C 41(9), 093105 (2017)

  22. E. Braaten, C. Langmack, D.H. Smith, Phys. Rev. D 90, 014044 (2014)

  23. W. Lucha, F.F. Schoberl, D. Gromes, Phys. Rep. (Rev. Sect. Phys. Lett.) 200, 127 (1991)

    ADS  Google Scholar 

  24. M.P. Valderrama, Phys. Rev. D 85, 114037 (2012)

  25. H. Hellmann, Acta Physicochim. URSS 4, 324 (1936)

    Google Scholar 

  26. J. Adamowaski, Phys. Rev. A 31, 43 (1985)

    Article  ADS  Google Scholar 

  27. M. Hamzavi et al., Commun. Theor. Phys. 60, 1 (2013)

    Article  ADS  Google Scholar 

  28. S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.V. Tkabladze, Phys. Rev. D 51, 3613 (1995)

    Article  ADS  Google Scholar 

  29. L.Y. Glozman, W. Plessas, K. Varga, R.F. Wagenbrunn, Phys. Rev. D 58, 094030 (1998)

  30. D. Ebert et al., Phys. Rev. D 79, 114029 (2009)

  31. S.M. Moosavi Nejad, A. Armat, Mod. Phys. Lett. A 33 1850022 (2018)

  32. M. Salajegheh, S.M. Moosavi Nejad, H. Khanpour, B.A. Kniehl, M. Soleymaninia, Phys. Rev. D 99, 114001 (2019)

  33. S. Mohammad Moosavi Nejad, Mahboobe Balali, Eur. Phys. J. C 76, 173 (2016)

  34. M. Salajegheh, S. Mohammad Moosavi Nejad, Hamzeh Khanpour, S. Atashbar Tehrani, Phys. Rev. C 97, 055201 (2018)

  35. S. Mohammad Moosavi Nejad, Phys. Rev. D 96, 114021 (2017)

  36. P.A. Zyla et al. (Particle Data Group), Prog, Theor. Exp. Phys. 2020, 083C01 (2020)

  37. A.V. Berezhnoy, A.K. Likhoded, A.V. Luchinsky, A.A. Novoselov. Phys. Rev. D 84, 094023 (2011)

  38. G. Pakhlova, et al. [Belle Collaboration], Phys. Rev. Lett. 101, 172001 (2008)

  39. M. Ablikim, et al. [BESIII Collaboration], Phys. Rev. Lett. 126, 102001 (2021)

  40. J. Matthew Durham [LHCb Collaboration], Nucl. Phys. A 121918 (2021)

  41. R. Aaij et al., Phys. Rev. Lett. 126, 092001 (2021)

  42. R. Aaij et al. [LHCb Collaboration], JHEP 2102, 024 (2021)

  43. W. Heupel, G. Eichmann, C.S. Fischer, Phys. Lett. B 718, 545 (2012)

    Article  ADS  Google Scholar 

  44. V.R. Debastiani, F.S. Navarra, Chin. Phys. C 43, 013105 (2019)

  45. Y.R. Liu, H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Prog. Part. Nucl. Phys 107, 237 (2019)

    Article  ADS  Google Scholar 

  46. N. Brambilla et al., Phys. Rept 873, 1–154 (2020)

    Article  ADS  Google Scholar 

  47. A. Armat, S.M. Moosavi Nejad, Int. J. Mod. Phys. E 28, 1950011 (2019)

  48. P.Z. Huang, et al. Phys. Rev. D 69, 074004 (2004)

  49. Z.-G. Wang, Int. J. Mod. Phys. A 36, 2150014 (2021)

    Article  ADS  Google Scholar 

  50. Y. Xue, X. Jin, H. Huang, J. Ping, Phys. Rev. D 103, 054010 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Armat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, N., Moosavi Nejad, S.M., Armat, A. et al. An analytical approach to the mass spectrum of heavy tetraquarks in dimeson model. Eur. Phys. J. Plus 137, 498 (2022). https://doi.org/10.1140/epjp/s13360-022-02658-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02658-y

Navigation