Skip to main content
Log in

Living mortars-simulation study on organic lime mortar used in heritage structures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The study explores the effective role of fermented plant extracts in hydraulic lime mortars towards the bacterial precipitation of calcium carbonate. Two frequently used plant extracts that are rich in carbohydrates, jaggery (unrefined sugar) and kadukkai (Terminilia chebulia) are fermented with and without lime for seven days in semi aerobic condition to study the end products and its possible interaction in lime mortar. The lime added fermented liquid has initiated the growth of Bacillus subtilis with a greater yield of lactic acid, ethanol and CO2 as compared to fermented liquid without lime. Analytical techniques like XRD, FESEM and TGA-DTA were used to study the hydrated phases and microstructural behaviour of the hydraulic lime mortars prepared with the above fermented liquids. The interaction of lime added fermented liquid with hydraulic lime has resulted the bio-precipitation of calcium carbonate polymorphs by Bacillus subtilis and enhanced the internal carbonation by absorption of carbon-di-oxide supplied by organics and shown greater compressive strength and bulk density in contrast to reference mortar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. D. Carran, J. Hughes, A. Leslie, C. Kennedy, A short history of the use of lime as a building material beyond Europe and North America. Int. J. Archit. Herit. 6(2), 117–146 (2012). https://doi.org/10.1080/15583058.2010.511694

    Article  Google Scholar 

  2. S. Thirumalini, S. Sekar, Heritage lime mortar characterization and simulation. School of Mechanical and Building Sciences, VIT University (2015). (Ph.D. thesis).

  3. I. Papayianni, M. Stefanidou, Durability aspects of ancient mortars of the archeological site of Olynthos. J. Cult. Herit. 8(2), 193–196 (2007). https://doi.org/10.1016/j.culher.2007.03.001

    Article  Google Scholar 

  4. A. Moropoulou, A. Bakolas, S. Anagnostopoulou, Composite materials in ancient structures. Cement Concrete Compos. 27(2), 295–300 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.017

    Article  Google Scholar 

  5. L.B. Sickels, Organic additives in mortars. Edinburgh Archit. Res. 8, 7–20 (1981)

    Google Scholar 

  6. D.S. Mitchell, The use of lime and cement in traditional buildings. Technical Conservation, Research and Education Group, Edinburgh (2007)

  7. M.S. Shetty, A.K. Jain, Concrete Technology (Theory and Practice), 8e (S. Chand, New Delhi, 2019)

    Google Scholar 

  8. B. Johannesson, P. Utgenannt, Microstructural changes caused by carbonation of cement mortar. Cem. Concr. Res. 31(6), 925–931 (2001). https://doi.org/10.1016/S0008-8846(01)00498-7

    Article  Google Scholar 

  9. M. Lippiello, Pozzolanic cementum of the ancient constructions in “Campi Flegrei” area. Int. J. Archit. Herit. 5(1), 84–100 (2010). https://doi.org/10.1080/15583050903272001

    Article  Google Scholar 

  10. M. Monaco, M. Aurilio, A. Tafuro, M. Guadagnuolo, Sustainable mortars for application in the cultural heritage field. Materials 14(3), 598 (2021). https://doi.org/10.3390/ma14030598

    Article  ADS  Google Scholar 

  11. Ö. Cizer, K. Van Balen, J. Elsen, D. Van Gemert, Crystal morphology of the precipitated calcite crystals from accelerated carbonation of lime binders. In 2nd International Conference on Accelerated Carbonation for Environmental and Materials Engineering, 149–158 (2008)

  12. L. Ventolà, M. Vendrell, P. Giraldez, L. Merino, Traditional organic additives improve lime mortars: new old materials for restoration and building natural stone fabrics. Constr. Build. Mater. 25(8), 3313–3318 (2011). https://doi.org/10.1016/j.conbuildmat.2011.03.020

    Article  Google Scholar 

  13. K.A. Gour, R. Ramadoss, T. Selvaraj, Revamping the traditional air lime mortar using the natural polymer–Areca nut for restoration application. Constr. Build. Mater. 164, 255–264 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.056

    Article  Google Scholar 

  14. S. Jayasingh, T. Selvaraj, Influence of organic additive on carbonation of air lime mortar–changes in mechanical and mineralogical characteristics. Eur. J. Environ. Civil Eng (2019). https://doi.org/10.1080/19648189.2020.1731716

    Article  Google Scholar 

  15. R. Ravi, S. Thirumalini, Effect of natural polymers from cissus glauca roxb on the mechanical and durability properties of hydraulic lime mortar. Int. J. Archit. Herit. 13(2), 229–243 (2019). https://doi.org/10.1080/15583058.2018.1431732

    Article  Google Scholar 

  16. M. Shivakumar, T. Selvaraj, M.P. Dhassaih, Preparation and characterization of ancient recipe of organic Lime Putty-Evaluation for its suitability in restoration of Padmanabhapuram Palace, India. Scientific Rep. 11(1), 1–20 (2021). https://doi.org/10.1038/s41598-021-91680-8

    Article  ADS  Google Scholar 

  17. D. Shanmugavel, R. Dubey, R. Ramadoss, Use of natural polymer from plant as admixture in hydraulic lime mortar masonry. J. Build. Eng. 30, 101252 (2020). https://doi.org/10.1016/j.jobe.2020.101252

    Article  Google Scholar 

  18. S. Pradeep, T. Selvaraj, Production of organic lime mortar to adapt CO 2 for Construction of Scared Groves@ Auroville, Puducherry, India. In Structural Analysis of Historical Constructions, 2439-2447 (2019). https://doi.org/10.1007/978-3-319-99441-3_262

  19. M. Singh, S.V. Kumar, S.A. Waghmare, Characterization of 6–11th century AD decorative lime plasters of rock cut caves of Ellora. Constr. Build. Mater. 98, 156–170 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.039

    Article  Google Scholar 

  20. C. Fiori, M. Vandini, S. Prati, G. Chiavari, Vaterite in the mortars of a mosaic in the Saint Peter basilica, Vatican (Rome). J. Cult. Herit. 10(2), 248–257 (2009). https://doi.org/10.1016/j.culher.2008.07.011

    Article  Google Scholar 

  21. S. Kurugöl, A. Güleç, Physico-chemical, petrographic, and mechanical characteristics of lime mortars in historic Yoros Castle (Turkey). Int. J. Archit. Herit. 6(3), 322–341 (2012). https://doi.org/10.1080/15583058.2010.540072

    Article  Google Scholar 

  22. D. Hess, D.J. Coker, J.M. Loutsch, J. Russ, Production of oxalates in vitro by microbes isolated from rock surfaces with prehistoric paints in the lower Pecos region Texas. Geoarchaeol. Int. J. 23(1), 3–11 (2008). https://doi.org/10.1002/gea.20208

    Article  Google Scholar 

  23. T. Cezar, Calcium oxalate: a surface treatment for limestone. J. Conserv. Museum Stud. (1998). https://doi.org/10.5334/jcms.4982

    Article  Google Scholar 

  24. S. Thirumalini, R. Ravi, M. Rajesh, Experimental investigation on physical and mechanical properties of lime mortar: effect of organic addition. J. Cult. Herit. 31, 97–104 (2018). https://doi.org/10.1016/j.culher.2017.10.009

    Article  Google Scholar 

  25. S. Jayasingh, T. Selvaraj, Effect of natural herbs on hydrated phases of lime mortar. J. Archit. Eng. 26(3), 04020021 (2020). https://doi.org/10.1061/(ASCE)AE.1943-5568.0000420

    Article  Google Scholar 

  26. S. Pradeep, T. Selvaraj, Identification of bio-minerals and their origin in lime mortars of ancient monument: Thanjavur Palace. Int. J. Archit. Herit. (2019). https://doi.org/10.1080/15583058.2019.1623341

    Article  Google Scholar 

  27. M.R. Singh, K. Ganaraj, P.D. Sable, Surface mediated Ca-phosphate biomineralization and characterization of the historic lime mortar, Janjira Sea Fort, India. J. Cult. Herit. (2020). https://doi.org/10.1016/j.culher.2020.02.004

    Article  Google Scholar 

  28. S. Castanier, G. Le Metayer-Levrel and J. P. Perthuisot, Bacterial roles in the precipitation of carbonate minerals. Microbial sediments, 32–39 (2000) https://doi.org/10.1007/978-3-662-04036-2_5

  29. V. Wiktor, H.M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement Concr. Compos. 33(7), 763–770 (2011). https://doi.org/10.1016/j.cemconcomp.2011.03.012

    Article  Google Scholar 

  30. N.N.T. Huynh, N.M. Phuong, N.P.A. Toan, N.K. Son, Bacillus subtilis HU58 Immobilized in micropores of diatomite for using in self-healing concrete. Procedia Eng. 171, 598–605 (2017). https://doi.org/10.1016/j.proeng.2017.01.385

    Article  Google Scholar 

  31. S. Krishnapriya, D.V. Babu, Isolation and identification of bacteria to improve the strength of concrete. Microbiol. Res. 174, 48–55 (2015). https://doi.org/10.1016/j.micres.2015.03.009

    Article  Google Scholar 

  32. R. Siddique, N.K. Chahal, Effect of ureolytic bacteria on concrete properties. Constr. Build. Mater. 25(10), 3791–3801 (2011). https://doi.org/10.1016/j.conbuildmat.2011.04.010

    Article  Google Scholar 

  33. R. Siddique, V. Nanda, E.H. Kadri, M.I. Khan, M. Singh, A. Rajor, Influence of bacteria on compressive strength and permeation properties of concrete made with cement baghouse filter dust. Constr. Build. Mater. 106, 461–469 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.112

    Article  Google Scholar 

  34. J. Wang, H.M. Jonkers, N. Boon, N. De Belie, Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Appl. Microbiol. Biotechnol. 101(12), 5101–5114 (2017). https://doi.org/10.1007/s00253-017-8260-2

    Article  Google Scholar 

  35. B.J. Lee, J.H. Hyun, Y.Y. Kim, K.J. Shin, Chloride permeability of damaged high-performance fiber-reinforced cement composite by repeated compressive loads. Materials 7(8), 5802–5815 (2014). https://doi.org/10.3390/ma7085802

    Article  ADS  Google Scholar 

  36. A. Mignon, D. Snoeck, P. Dubruel, S. Van Vlierberghe, N. De Belie, Crack mitigation in concrete: superabsorbent polymers as key to success? Materials 10(3), 237 (2017). https://doi.org/10.3390/ma10030237

    Article  ADS  Google Scholar 

  37. W. De Muynck, K. Cox, N. De Belie, W. Verstraete, Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr. Build. Mater. 22(5), 875–885 (2008). https://doi.org/10.1016/j.conbuildmat.2006.12.011

    Article  Google Scholar 

  38. V. Achal, X. Pan, N. Özyurt, Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol. Eng. 37(4), 554–559 (2011). https://doi.org/10.1016/j.ecoleng.2010.11.009

    Article  Google Scholar 

  39. H.M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, E. Schlangen, Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36(2), 230–235 (2010). https://doi.org/10.1016/j.ecoleng.2008.12.036

    Article  Google Scholar 

  40. N. Chahal, R. Siddique, A. Rajor, Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr. Build. Mater. 28(1), 351–356 (2012). https://doi.org/10.1016/j.conbuildmat.2011.07.042

    Article  Google Scholar 

  41. A.S. Nene, Building materials and construction techniques of ancient India (Ganga, New Delhi, India, 2012)

    Google Scholar 

  42. Taylor. H.F, Cement chemistry (Vol. 2). London: Thomas Telford (1997)

  43. E.C. Eckel, L, Cements, plasters: their materials, manufacture, and properties (John Wiley and Sons, New York, 1922)

    Google Scholar 

  44. IS: 2386 (Part I), Methods of test for aggregates for concrete – Particle size and shape. Bureau of Indian Standards. New Delhi, India (1963)

  45. IS: 7874 (Part I), Methods of tests for animal feeds and feeding stuffs. New Delhi, India: Bureau of Indian (1975)

  46. S. Kumar, S.N. Gummadi, Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites. Appl. Microbiol. Biotechnol. 89(5), 1405–1415 (2011). https://doi.org/10.1007/s00253-010-2997-1

    Article  Google Scholar 

  47. H.C.J. Gram, Danish bacteriologist, gram stain research. Encyclopaedia Britannica (1884) https://www.britannica.com/biography/Hans-Christian-Joachim-Gram

  48. IS: 6932 (Part VIII), Methods of tests for building limes – determination of workability. Bureau of Indian Standards. New Delhi, India (1973)

  49. IS: 6932 (Part VII), Methods of tests for building limes – Determination of compressive and transverse strengths. Bureau of Indian Standards. New Delhi, India (1973)

  50. PEM. R, 25, Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Mater Struct 13,175–253 (1980)

  51. S. Chandra, History of architecture and ancient building materials in India: Part I & Part II (in single volume), New Delhi (2003)

  52. M. Singh, S.V. Kumar, S.A. Waghmare, P.D. Sabale, Aragonite–vaterite–calcite: polymorphs of CaCO3 in 7th century CE lime plasters of Alampur group of temples, India. Constr. Build. Mater. 112, 386–397 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.191

    Article  Google Scholar 

  53. Ö. Cizer, K. Van Balen, D. Van Gemert, Competition between hydration and carbonation in hydraulic lime and lime-pozzolana mortars. Adv. Mater. Res. 133, 241–246 (2010). https://doi.org/10.4028/www.scientific.net/AMR.133-134.241

    Article  Google Scholar 

  54. R. Ravi, S. Thirumalini, N. Taher, Analysis of ancient lime plasters–reason behind longevity of the Monument Charminar, India a study. J. Build. Eng. 20, 30–41 (2018). https://doi.org/10.1016/j.jobe.2018.04.010

    Article  Google Scholar 

  55. S.P. Saridhe, T. Selvaraj, Reporting the ancient green construction technology of limecrete slabs adopted in Udaipur, Rajasthan. J. Clean. Prod. 279, 123682 (2020). https://doi.org/10.1016/j.jclepro.2020.123682

    Article  Google Scholar 

  56. H. Hwang, H.J. Lee, M.A. Lee, H. Sohn, Y.H. Chang, S.G. Han, J.Y. Jeong, S.H. Lee, S.W. Hong, Selection and characterization of staphylococcus hominis subsp hominis WiKim0113 isolated from kimchi as a starter culture for the production of natural pre-converted nitrite. Food Sci. Animal Resour. 40(4), 512 (2020). https://doi.org/10.5851/kosfa.2020.e29

    Article  Google Scholar 

  57. W.C. Chen, R.S. Juang, Y.H. Wei, Applications of a lipopeptide biosurfactant, surfactin, produced by microorganisms. Biochem. Eng. J. 103, 158–169 (2015). https://doi.org/10.1016/j.bej.2015.07.009

    Article  Google Scholar 

  58. A.E. Namvar, S. Bastarahang, N. Abbasi, G.S. Ghehi, S. Farhadbakhtiarian, P. Arezi, M. Hosseini, S.Z. Baravati, Z. Jokar, S.G. Chermahin, Clinical characteristics of Staphylococcus epidermidis: a systematic review. GMS Hyg. Infect. Control. (2014). https://doi.org/10.3205/dgkh000243

    Article  Google Scholar 

  59. P. Giannaros, A. Kanellopoulos, A. Al-Tabbaa, Sealing of cracks in cement using microencapsulated sodium silicate. Smart Mater. Struct. 25(8), 084005 (2016)

    Article  ADS  Google Scholar 

  60. M. De Rooij, K. Van Tittelboom, N. De Belie and E. Schlangen eds., Self-healing phenomena in cement-based materials: state-of-the-art report of RILEM technical committee 221-SHC: self-Healing phenomena in cement-Based materials, (2013) https://doi.org/10.1007/978-94-007-6624-2

Download references

Acknowledgements

The authors are thankful to the Vellore Institute of Technology (VIT), Vellore for accommodating the sophisticated analytical techniques for the successful completion of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirumalini Selvaraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep, S.S., Gummadi, S.N. & Selvaraj, T. Living mortars-simulation study on organic lime mortar used in heritage structures. Eur. Phys. J. Plus 137, 499 (2022). https://doi.org/10.1140/epjp/s13360-022-02635-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02635-5

Navigation