Skip to main content
Log in

Configurational entropy and spectroscopy of even-spin glueball resonances in dynamical AdS/QCD

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Even-spin glueball resonances in AdS/QCD are here studied using the configurational entropy (CE). The concept of CE Regge trajectories, associating the CE of the even-spin glueball resonances with both their spin \(J^{PC}\) and to their mass spectra, is used to derive the mass spectra of higher \(J^{PC}\) resonances with J even. For it, the linear, the exponential modified, and the anomalous quadratic dilatonic models, each one with linear and logarithmic anomalous corrections, are employed. Several methods are implemented, hybridizing AdS/QCD and established data of lattice QCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statements

This manuscript has no associated data or the data will not be deposited. [Authors comment: This is a theoretical study and no experimental data has been listed].

Notes

  1. In this work the AdS radius L is set to unity.

References

  1. C.E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    Article  Google Scholar 

  2. M. Gleiser, N. Stamatopoulos, Phys. Lett. B 713, 304 (2012). [arXiv:1111.5597 [hep-th]]

    Article  ADS  Google Scholar 

  3. M. Gleiser, N. Stamatopoulos, Phys. Rev. D 86, 045004 (2012). [arXiv:1205.3061 [hep-th]]

    Article  ADS  Google Scholar 

  4. A.E. Bernardini, R. da Rocha, Phys. Lett. B 762, 107 (2016). [arXiv:1605.00294 [hep-th]]

    Article  ADS  Google Scholar 

  5. A. Fernandes-Silva, A.J. Ferreira-Martins, R. da Rocha, Phys. Lett. B 791, 323 (2019). [arXiv:1901.07492 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Gleiser, M. Stephens, D. Sowinski, Phys. Rev. D 97, 096007 (2018). [arXiv:1803.08550 [hep-th]]

    Article  ADS  Google Scholar 

  7. R.A.C. Correa, R. da Rocha and A. de Souza Dutra, Annals Phys. 359, 198 (2015) [arXiv:1501.02000 [hep-th]]

  8. C.W. Ma, Y.G. Ma, Prog. Part. Nucl. Phys. 99, 120 (2018). [arXiv:1801.02192 [nucl-th]]

    Article  ADS  Google Scholar 

  9. M. Gleiser, D. Sowinski, Phys. Lett. B 747, 125 (2015). [arXiv:1501.06800 [cond-mat.stat-mech]]

    Article  ADS  MathSciNet  Google Scholar 

  10. G. Karapetyan, EPL 117, 18001 (2017). [arXiv:1612.09564 [hep-ph]]

    Article  ADS  Google Scholar 

  11. G. Karapetyan, EPL 118, 38001 (2017). [arXiv:1705.10617 [hep-ph]]

    Article  ADS  Google Scholar 

  12. G. Karapetyan, Phys. Lett. B 781, 201 (2018). [arXiv:1802.09105 [nucl-th]]

    Article  ADS  Google Scholar 

  13. G. Karapetyan, Phys. Lett. B 786, 418 (2018). [arXiv:1807.04540 [nucl-th]]

    Article  ADS  Google Scholar 

  14. M. Tanabashi et al., ParticleDataGroup. Phys. Rev. D 98, 030001 (2018)

    Article  ADS  Google Scholar 

  15. R. da Rocha, Phys. Rev. D 103, 106027 (2021). [arXiv:2103.03924 [hep-ph]]

    Article  ADS  Google Scholar 

  16. R. da Rocha, Phys. Lett. B 814, 136112 (2021). [arXiv:2101.03602 [hep-th]]

    Article  Google Scholar 

  17. A.E. Bernardini, R. da Rocha, Phys. Rev. D 98, 126011 (2018). [arXiv:1809.10055 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  18. L.F. Ferreira, R. da Rocha, Phys. Rev. D 99, 086001 (2019). [arXiv:1902.04534 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  19. N. Barbosa-Cendejas, R. Cartas-Fuentevilla, A. Herrera-Aguilar, R.R. Mora-Luna, R. da Rocha, Phys. Lett. B 782, 607 (2018). [arXiv:1805.04485 [hep-th]]

    Article  ADS  Google Scholar 

  20. L.F. Ferreira, R. da Rocha, Phys. Rev. D 101, 106002 (2020). [arXiv:1907.11809 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  21. A.E. Bernardini, N.R.F. Braga, R. da Rocha, Phys. Lett. B 765, 81 (2017). [arXiv:1609.01258 [hep-th]]

    Article  ADS  Google Scholar 

  22. N.R.F. Braga, R. da Rocha, Phys. Lett. B 776, 78 (2018). [arXiv:1710.07383 [hep-th]]

    Article  ADS  Google Scholar 

  23. N.R.F. Braga, L.F. Ferreira, R. da Rocha, Phys. Lett. B 787, 16 (2018). [arXiv:1808.10499 [hep-ph]]

    Article  ADS  Google Scholar 

  24. N.R. Braga, R. da Mata, Phys. Rev. D 101, 105016 (2020). [arXiv:2002.09413 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  25. G. Karapetyan, Eur. Phys. J. Plus 136, 1012 (2021). [arXiv:2105.07546 [hep-ph]]

    Article  Google Scholar 

  26. G. Karapetyan, Eur. Phys. J. Plus 136, 122 (2021). [arXiv:2003.08994 [hep-ph]]

    Article  Google Scholar 

  27. G. Karapetyan, EPL 129, 18002 (2020). [arXiv:1912.10071 [hep-ph]]

    Article  ADS  Google Scholar 

  28. A. Goncalves da Silva, R. da Rocha, Phys. Lett. B 774, 98 (2017). [arXiv:1706.01482 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  29. P. Colangelo, F. Loparco, Phys. Lett. B 788, 500 (2019). [arXiv:1811.05272 [hep-ph]]

    Article  ADS  Google Scholar 

  30. L.F. Ferreira, R. da Rocha, Phys. Rev. D 101, 106002 (2020). [arXiv:2004.04551 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  31. R. Casadio, R. da Rocha, Phys. Lett. B 763, 434 (2016). [arXiv:1610.01572 [hep-th]]

    Article  ADS  Google Scholar 

  32. M. Gleiser, N. Jiang, Phys. Rev. D 92, 044046 (2015). [arXiv:1506.05722 [gr-qc]]

    Article  ADS  Google Scholar 

  33. N.R.F. Braga, R. da Rocha, Phys. Lett. B 767, 386 (2017). [arXiv:1612.03289 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  34. N.R. Braga, Phys. Lett. B 797, 134919 (2019). [arXiv:1907.05756 [hep-th]]

    Article  MathSciNet  Google Scholar 

  35. C.O. Lee, Phys. Lett. B 790, 197 (2019). [arXiv:1812.00343 [gr-qc]]

    Article  ADS  Google Scholar 

  36. C.O. Lee, Phys. Lett. B 772, 471 (2017). [arXiv:1705.09047 [gr-qc]]

    Article  ADS  Google Scholar 

  37. R.A.C. Correa, D.M. Dantas, C.A.S. Almeida, R. da Rocha, Phys. Lett. B 755, 358 (2016). [arXiv:1601.00076 [hep-th]]

    Article  ADS  Google Scholar 

  38. W.T. Cruz, D.M. Dantas, R.V. Maluf, C.A.S. Almeida, Annalen Phys. 531, 1970035 (2019)

    Article  ADS  Google Scholar 

  39. C.O. Lee, Phys. Lett. B 800, 135030 (2020). [arXiv:1908.06074 [hep-th]]

    Article  MathSciNet  Google Scholar 

  40. D. Bazeia, D.C. Moreira, E.I.B. Rodrigues, J. Magn. Magn. Mater. 475, 734 (2019)

    Article  ADS  Google Scholar 

  41. D. Bazeia, E.I.B. Rodrigues, Phys. Lett. A 392, 127170 (2021)

    Article  Google Scholar 

  42. A. Alves, A.G. Dias, R. da Silva, Physica 420, 1 (2015). [arXiv:1408.0827 [hep-ph]]

    Article  Google Scholar 

  43. A. Alves, A.G. Dias, R. da Silva, Braz. J. Phys. 47, 426 (2017)

    Article  ADS  Google Scholar 

  44. E. Witten, Riv. Nuovo Cim. 43, 3 (2020). [arXiv:1805.11965 [hep-th]]

    Article  Google Scholar 

  45. J. Erlich, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. Lett. 95, 261602 (2005). [arXiv:hep-ph/0501128]

    Article  ADS  Google Scholar 

  46. A. Karch, E. Katz, D.T. Son, M.A. Stephanov, Phys. Rev. D 74, 015005 (2006). [arXiv:hep-ph/0602229]

    Article  ADS  Google Scholar 

  47. S.J. Brodsky, G.F. de Teramond, H.G. Dosch, J. Erlich, Phys. Rept. 584, 1 (2015). [arXiv:1407.8131 [hep-ph]]

    Article  ADS  Google Scholar 

  48. J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] [arXiv:hep-th/9711200]

  49. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998). [arXiv:hep-th/9802150]

    Article  ADS  MathSciNet  Google Scholar 

  50. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Phys. Lett. B 428, 105 (1998). [arXiv:hep-th/9802109]

    Article  ADS  MathSciNet  Google Scholar 

  51. J. Polchinski, M.J. Strassler, Phys. Rev. Lett. 88, 031601 (2002). [arXiv:hep-th/0109174]

    Article  ADS  MathSciNet  Google Scholar 

  52. H. Boschi-Filho, N.R.F. Braga, Eur. Phys. J. C 32, 529 (2004). [arXiv:hep-th/0209080]

    Article  ADS  Google Scholar 

  53. H. Boschi-Filho, N.R.F. Braga, JHEP 0305, 009 (2003). [arXiv:hep-th/0212207]

    Article  ADS  Google Scholar 

  54. S. He, M. Huang, Q.S. Yan, Y. Yang, Eur. Phys. J. C 66, 187 (2010). [arXiv:0710.0988 [hep-ph]]

    Article  ADS  Google Scholar 

  55. T. Gutsche, S. Kuleshov, V.E. Lyubovitskij, I.T. Obukhovsky, Phys. Rev. D 94, 034010 (2016). [arXiv:1605.01035 [hep-ph]]

    Article  ADS  Google Scholar 

  56. J.F. Donoghue, K. Johnson, B.A. Li, Phys. Lett. B 99, 416 (1981)

    Article  ADS  Google Scholar 

  57. M. Sergeenko, EPL 89, 11001 (2010). [arXiv:1107.1671 [hep-ph]]

    Article  ADS  Google Scholar 

  58. C. Ewerz, M. Maniatis, O. Nachtmann, Annals Phys. 342, 31 (2014). [arXiv:1309.3478 [hep-ph]]

    Article  ADS  Google Scholar 

  59. D. Li, M. Huang, JHEP 1311, 088 (2013). [arXiv:1303.6929 [hep-ph]]

    Article  ADS  Google Scholar 

  60. D. M. Rodrigues, E. Folco Capossoli and H. Boschi-Filho, EPL 122, 21001 (2018) [arXiv:1611.09817 [hep-ph]]

  61. A. Ballon-Bayona, H. Boschi-Filho, L.A.H. Mamani, A.S. Miranda, V.T. Zanchin, Phys. Rev. D 97, 046001 (2018). [arXiv:1708.08968 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  62. W. de Paula, T. Frederico, H. Forkel, M. Beyer, Phys. Rev. D 79, 075019 (2009). [arXiv:0806.3830 [hep-ph]]

    Article  ADS  Google Scholar 

  63. D. Li, S. He, M. Huang, Q.S. Yan, JHEP 09, 041 (2011). [arXiv:1103.5389 [hep-th]]

    Article  ADS  Google Scholar 

  64. U. Gursoy, E. Kiritsis, JHEP 0802, 032 (2008). [arXiv:0707.1324 [hep-th]]

    Article  ADS  Google Scholar 

  65. U. Gursoy, E. Kiritsis, F. Nitti, JHEP 0802, 019 (2008). [arXiv:0707.1349 [hep-th]]

    Article  ADS  Google Scholar 

  66. Z. Fang, Y.L. Wu, L. Zhang, Phys. Rev. D 100, 054008 (2019). [arXiv:1904.04695 [hep-ph]]

    Article  ADS  Google Scholar 

  67. U. Gursoy, E. Kiritsis, L. Mazzanti, F. Nitti, JHEP 05, 033 (2009). [arXiv:0812.0792 [hep-th]]

    Article  ADS  Google Scholar 

  68. D. Marinho Rodrigues and R. da Rocha, Phys. Lett. B 811, 135943 (2020) [arXiv:2009.01890 [hep-th]]

  69. E. Folco Capossoli and H. Boschi-Filho, Phys. Lett. B 753 (2016) 419 [arXiv:1510.03372 [hep-ph]]

  70. A. Ballon-Bayona, R. Carcassés Quevedo, M. S. Costa and M. Djurić, Phys. Rev. D 93, 035005 (2016) [arXiv:1508.00008 [hep-ph]]

  71. E. Folco Capossoli, D. Li and H. Boschi-Filho, Eur. Phys. J. C 76, 320 (2016) [arXiv:1604.01647 [hep-ph]]

  72. E. Folco Capossoli, D. Li and H. Boschi-Filho, Phys. Lett. B 760, 101 (2016) [arXiv:1601.05114 [hep-ph]]

  73. I. Szanyi, L. Jenkovszky, R. Schicker, V. Svintozelskyi, Nucl. Phys. A 998, 121728 (2020). [arXiv:1910.02494 [hep-ph]]

    Article  Google Scholar 

  74. N.R. Constable, R.C. Myers, JHEP 9910, 037 (1999). [arXiv:hep-th/9908175]

    Article  ADS  Google Scholar 

  75. D. M. Rodrigues, E. Folco Capossoli and H. Boschi-Filho, Phys. Rev. D 95, 076011 (2017) [arXiv:1611.03820 [hep-th]]

  76. A. Godizov, Eur. Phys. J. C 76, 361 (2016). [arXiv:1604.01689 [hep-ph]]

    Article  ADS  Google Scholar 

  77. L. A. Pando Zayas and C. A. Terrero-Escalante, JHEP 09 (2010) 094 [arXiv:1007.0277 [hep-th]]

  78. K. Hashimoto, K. Murata, K. Yoshida, Phys. Rev. Lett. 117, 231602 (2016). [arXiv:1605.08124 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  79. V. Pascalutsa, Eur. Phys. J. A 16, 149 (2003). [arXiv:hep-ph/0201040 [hep-ph]]

    Article  ADS  Google Scholar 

  80. B. Muller, A. Trayanov, Phys. Rev. Lett. 68, 3387 (1992)

    Article  ADS  Google Scholar 

  81. P. Basu, A. Ghosh, Phys. Lett. B 729, 50 (2014). [arXiv:1304.6348 [hep-th]]

    Article  ADS  Google Scholar 

  82. J. Maldacena, S.H. Shenker, D. Stanford, JHEP 08, 106 (2016). [arXiv:1503.01409 [hep-th]]

    Article  ADS  Google Scholar 

  83. V.M. Abazov et al., TOTEM and D0. Phys. Rev. Lett. 127, 062003 (2021). [arXiv:2012.03981 [hep-ex]]

    Article  ADS  Google Scholar 

  84. T. Csörgő, T. Novak, R. Pasechnik, A. Ster, I. Szanyi, Eur. Phys. J. C 81, 180 (2021). [arXiv:1912.11968 [hep-ph]]

    Article  ADS  Google Scholar 

  85. I. Iatrakis, A. Ramamurti, E. Shuryak, Phys. Rev. D 94, 045005 (2016). [arXiv:1602.05014 [hep-ph]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Song He for useful correspondence. DMR is supported by the National Council for Scientific and Technological Development – CNPq (Brazil) under Grant No. 152447/2019-9 and to FAPESP (Grant No. 2021/01565-8). RdR is grateful to The São Paulo Research Foundation - FAPESP (Grants No. 2017/18897-8, No. 2021/01089-1, and No. 2022/01734-7) and the National Council for Scientific and Technological Development – CNPq (Grants No. 303390/2019-0 and No. 402535/2021-9), for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. da Rocha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, D.M., da Rocha, R. Configurational entropy and spectroscopy of even-spin glueball resonances in dynamical AdS/QCD. Eur. Phys. J. Plus 137, 429 (2022). https://doi.org/10.1140/epjp/s13360-022-02622-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02622-w

Navigation