Skip to main content

Advertisement

Log in

Prediction of structural, electronic, mechanical, thermal, and thermoelectric properties in PbMO3 (M = Sb, Bi) perovskite compounds: a DFT study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, we have presented the structural, mechanical, electronic, thermodynamic and thermoelectric properties of PbMO3 (M = Sb, Bi) compounds using different exchange–correlation potentials, i.e. with generalized gradient and local density approximations in the framework of density functional theory. The tolerance factors and lattice constants have been computed using the available ionic data. The formation energy, cohesive energy, and tolerance factors have been determined to ensure the stability of PbMO3 (M = Sb, Bi) compounds in cubic phase. It is found from our calculated results that the computed lattice constants are consistent with the available data. The elastic constants are also calculated and satisfy the cubic phase stability criteria. The electronic band profiles illustrate their metallic nature. According to the computed values of the Cauchy's pressure, Pugh's ratio, and Poisson's ratio, the considered perovskites are mechanically brittle. Further, the thermodynamic behaviour of these materials shows that the variation of temperature affects thermal parameters such as Debye temperature, specific heat capacity, and thermal expansion. Furthermore, transport characteristics, for instance, Seebeck coefficient, electrical conductivity, thermal conductivity and figure of merit, have also been computed under temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are not openly available and are available from the corresponding author upon reasonable request.]

References

  1. J. Wang, X. Pang, M. Akinc, Z. Lin, J. Mater. Chem. 20, 5945 (2010)

    Article  Google Scholar 

  2. T. Qi, I. Grinberg, A.M. Rappe, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 134113 (2010).

  3. Z.-X. Chen, Y. Chen, Y.-S. Jiang, J. Phys. Chem. B 106, 9986 (2002)

    Article  Google Scholar 

  4. D. Damjanovic, F. Brem, N. Setter, Appl. Phys. Lett. 80, 652 (2002)

    Article  ADS  Google Scholar 

  5. V.V. Lemanov, A.V. Sotnikov, E.P. Smirnova, M. Weihnacht, R. Kunze, Solid State Comun. 110, 611 (1999)

    Article  ADS  Google Scholar 

  6. R.E. Tuzun, D.W. Noid, B.G. Sumpter, J. Comput. Chem. 21, 553 (2000)

    Article  Google Scholar 

  7. J. Bennett, A.J. Bell, T.J. Stevenson, T.P. Comyn, Appl. Phys. Lett. 103, 152901 (2013)

  8. L. Kong, G. Liu, S. Zhang, H. Liu, J. Appl. Phys. (Melville, NY, U.S.), 114, 144106 (2013)

  9. L. Li, X. Liu, Y. Zhang, P.A. Salvador, G.S. Rohrer, Int. J. Hydrogen Energy 38, 6948 (2013)

    Article  Google Scholar 

  10. A. Chaupatnik, P. Barpanda, Electrochemistry Commun. 127, 107038 (2021)

  11. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  12. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

    Article  ADS  Google Scholar 

  13. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J.E. Moser, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  14. J. Burschka, N. Pellet, S-J. Moon, R. Humphry-Baker, P. Gao, M. Nazeeruddin, M.K. Grat-zel, Nature 499, 316 (2013)

  15. Jr. M. Di. Domenico, S.H. Wemple, Phys. Rev. 166, 565 (1968)

  16. H. Fang, Y. Wang, S. Shang, Z.-K. Liu, Phys. Rev. B. 91, 024104 (2015)

  17. S.A. Khandy and D.C Gupta, RSC Adv. 6, 48009 (2016)

  18. S.A. Dar, V. Srivastava, U.K. Sakalle, J. Electron. Mater. 46, 6870–6877 (2017)

    Article  ADS  Google Scholar 

  19. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977)

    Google Scholar 

  20. C. Moure, O. Pena, Prog. Solid State Chem. 43, 123 (2015)

    Article  Google Scholar 

  21. G. Murtaza, I. Ahmad, B. Amin, A. Afaq, M. Maqbool, J. Maqssod et al., Opt. Mater. 33, 553 (2011)

    Article  ADS  Google Scholar 

  22. O. Muller, R. Roy, The Major Ternary Structural Families (Springer, Berlin, 1974)

    Book  Google Scholar 

  23. J.G. Bednorz, K.A. Muller, Rev. Mod. Phys. 60, 585 (1988)

  24. S.-W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  25. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  26. J.C. Boivin, G. Mairesse, Chem. Mater. 10, 2870 (1998)

    Article  Google Scholar 

  27. G. Trimarchi, X. Zhang, A.J. Freeman, A. Zunger, Phys. Rev. B 90, 161111 (2014.

  28. H. Jin, S.H. Rhim, J. Im, A.J. Freeman, Sci. Rep. 3, 1651 (2013)

    Article  ADS  Google Scholar 

  29. A. Abbad, W. Benstaali, H.A. Bentounes, S. Bentata, Y. Benmalem, Solid State Commun. 228, 36 (2016)

    Article  ADS  Google Scholar 

  30. A. Dey, R. Sharma, S.A. Dar, I. H Wani. Comput. Condens. Matter 26, e00532 (2021)

  31. S.A. Dar, R. Sharma, V. Srivastava, U.K. Sakalle, RSC Adv. 9, 9522 (2019)

    Article  ADS  Google Scholar 

  32. A. Dey, R. Sharma, S.A. Dar, H.H. Raza, J. Supercond. Nov. Magn. 34, 781–796 (2021)

    Article  Google Scholar 

  33. A. Dey, R. Sharma, S.A. Dar, Mater. Today Commun. 25, 101647, (2020)

  34. S.A. Dar, R. Sharma, A.K. Mishra, J. Mol. Graph. Model. 90, 120 (2019)

    Article  Google Scholar 

  35. R. Sharma, A. Dey, S.A Dar, V. Srivastava, Comput. Theor. Chem. 1204, 113415 (2021)

  36. S.A. Dar, M.A, Ali, V. Srivastava, Eur. Phys. J. B 93, 102 (2020)

  37. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, Nat. Mater. 17, 349 (2018)

    Article  ADS  Google Scholar 

  38. P.Y. Fan, Y.Y. Zhang, S.T. Zhang, B. Xie, Y.W. Zhu, M.A. Marwat, W. Ma, K. Liu, L. Shu, H. Zhang, J. Mater. 5, 480–488 (2019)

    Google Scholar 

  39. S.A. Dar, V. Srivastava, U.K. Sakalle, J. Electron. Mater. 46, 6870 (2017)

    Article  ADS  Google Scholar 

  40. D. Kumar, G. Agarwal, B. Tripathi, D. Vyas, V. Kulshrestha, J. of Alloys and Compds 484, 463–466 (2009)

    Article  Google Scholar 

  41. R. Sharma, S.A. Dar, V. Srivastava, Phys. Lett. A 411, 127559 (2021)

  42. P. Wang, D. Zhou, J. Li, L. Pang, J. Su, S. Trukhanov, A. Trukhanov, Nano Energy 78, 105247 (2020)

  43. P. Wang, D. Zhou, H. Guo, W. Liu, J. Su, M. Fu, C. Singh, S. Trukhanov, A. Trukhanov, J. Mater. Chem. A 8, 11124–11132 (2020)

    Article  Google Scholar 

  44. T. Kaur, S. Kumar, B.H. Bhat, B. Want, A.K. Srivastava, Appl. Phys. A 119, 1531–1540 (2015)

    Article  ADS  Google Scholar 

  45. Kaur, Talwinder, B. Kaur, B. H. Bhat, S. Kumar, and A. K. Srivastava. Phys. B: Condens. Matter 456, 206–212 (2015)

  46. D.K. Rajak, D.D. Pagar, R. Kumar, C.I. Pruncu, J. Mater. Res. Technol. 8, 6354–6374 (2019)

    Article  Google Scholar 

  47. The Materials Project: A materials genome approach to accelerating materials innovation; https://materialsproject.org/materials/mp-1186948/

  48. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave + local Orbitals Program for Calculating Crystal Properties, Karl Heinz Schwarz (Universitat Wien, Austria, Techn, 2001)

    Google Scholar 

  49. P. Blaha, K. Schwarz, P. Sorantin, S.K. Trickey, Comput. Phys. Commun. 59, 339 (1990)

    Article  Google Scholar 

  50. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  51. L. Hedin, B.I. Lundqvist, J. Phys. C 4, 2064 (1971)

    Article  ADS  Google Scholar 

  52. J.P. Perdew, K. Burke, M. Ernzerhof, Phys Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  53. P. Haas, F. Tran, P. Blaha Phys. Rev. B 79, 085104 (2009)

  54. P.E. Bloch, O. Jepson, O.K. Anderson, Phys. Rev. B 49, 16223 (1994)

    Article  ADS  Google Scholar 

  55. M. Jamal, IRelast and 2DR-optimize packages are provided by M. Jamal as part of the commercial code WIEN2K, <http://www.wien2k.at> (2014)

  56. M. Jamal, S. JalaliAsadabadi, I. Ahmad, H.A. Rahnamaye Aliabad, Comput. Mater. Sci. 95, 592–9 (2014)

  57. H. J Monkhorst, J.D. Pack, Phys. Rev. B, 13, 5188 (1976)

  58. A. Otero-de-la-Roza, V. Lua ̃na, Phys. Rev. B 84, 184103 (2011)

  59. G.K.H. Madsen, K. Schwarz, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  60. F D. Murnaghan Proc. Natl. Sci. USA 30,244 (1944).

  61. R.D. Shanon, Acta Crystallaloger. Sect. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  62. J.B. Goodenogh, Rep. Prog. Phys. 67, 1915 (2004)

    Article  ADS  Google Scholar 

  63. R. Hill, Proc. Phy. Soc. Lond. 65, 349 (1952)

    Article  ADS  Google Scholar 

  64. A. Reuss, Z. Angew, Mater. Phys. 9, 49 (1929)

    Google Scholar 

  65. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  66. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic constants and Elastic Moduli of metals and Insulators Hand- book, edited by I.N. Frantsevich (NaukovaDumka, Kiev, 1982) p. 60.

  67. D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  68. J. Haines, J.M. Leger, G. Bocquillon, Annu. Rev. Mater. Sci. 31, 1 (2001)

    Article  ADS  Google Scholar 

  69. T. Vergaard, J.W. Hirtchinson, J. Am. Ceram. Soc. 71, 157 (1988)

    Article  Google Scholar 

  70. S.K. Mishra, S. Satpathy, O. Jepsen, J. Phys.: Condens. Matter 9, 461 (1997)

    ADS  Google Scholar 

  71. B. Lenoir, M. Cassart, J.-P. Michenaud, H. Scherrer, S. Scherrer, J. Phys. Chem. Solids 57, 89–99 (1996)

    Article  ADS  Google Scholar 

  72. T. Jia, G. Chen, Y. Zhang, Phys. Rev. B 95, 1552 (2017)

    Google Scholar 

  73. D. Chenine, Z. Aziz, A. Abbad, B. Bouadjemi, O.K. Youb, T. Lantri, O. Lakel, S. Benata, Chin. J. of Phys. 55, 2514–2522 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ramesh Sharma or Vipul Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.B., Srivastava, A., Sharma, R. et al. Prediction of structural, electronic, mechanical, thermal, and thermoelectric properties in PbMO3 (M = Sb, Bi) perovskite compounds: a DFT study. Eur. Phys. J. Plus 137, 380 (2022). https://doi.org/10.1140/epjp/s13360-022-02580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02580-3

Navigation