Skip to main content
Log in

The Maxwellian peristaltic transport of the MHD flow via elastic channel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The study of peristalsis is a subject of active interest in different fields due to a wide variety of applications including chemical engineering, electronics, physiology as well as in biomedicines. This paper focuses on studying the magnetohydrodynamic peristaltic motion of Maxwell’s viscous compressible fluid through a two-dimensional duct with an elastic flexible wall via a porous medium. The combined impacts of a magnetic flux density, physical parameters, permeability parameter, and the elastic wall features on the flow are the focus of attention. To get the solution of the governing equations, the perturbation approach is used and takes the small amplitude ratio. In the second approximate order, the analytical relations of average velocity at the channel's axis and the perturbation function of average velocity are introduced and discussed graphically under different values of interest parameters. The results indicate that the dynamic behavior of the flow as the elastic artery wall damping decreases the blood velocity, and the magnetic flux also reduces the blood velocity near the boundaries of the artery. The accumulation of fats induces the porosity that limits movement that can adversely affect the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.W. Latham, Fluid motions in a peristaltic pump, Massachusetts Institute of Technology (1966)

  2. S.I. Abdelsalam, M. Bhatti, The study of non-Newtonian nanofluid with hall and ion slip effects on peristaltically induced motion in a non-uniform channel. RSC Adv. 8, 7904–7915 (2018)

    Article  ADS  Google Scholar 

  3. S.I. Abdelsalam, M.M. Bhatti, The impact of impinging TiO2 nanoparticles in Prandtl nanofluid along with endoscopic and variable magnetic field effects on peristaltic blood flow. Multidiscip. Model. Mater. Struct. 14(3), 530–548 (2018)

    Article  Google Scholar 

  4. S.I. Abdelsalam, K. Vafai, Combined effects of magnetic field and rheological properties on the peristaltic flow of a compressible fluid in a microfluidic channel. Eur. J. Mech.-B/Fluids 65, 398–411 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  5. I. Eldesoky, Influence of slip condition on peristaltic transport of a compressible Maxwell fluid through porous medium in a tube. Int. J. Appl. Math. Mech. 8, 99–117 (2012)

    Google Scholar 

  6. S. Srinivas, R. Gayathri, M. Kothandapani, The influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport. Comput. Phys. Commun. 180, 2115–2122 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. D. Tsiklauri, I. Beresnev, Non-Newtonian effects in the peristaltic flow of a Maxwell fluid. Phys. Rev. E 64, 036303 (2001)

    Article  ADS  Google Scholar 

  8. I.M. Eldesoky, R.M. Abumandour, E.T. Abdelwahab, Analysis for various effects of relaxation time and wall properties on compressible Maxwellian peristaltic slip flow. Zeitschrift für Naturforschung A 74, 317–331 (2019)

    Article  ADS  Google Scholar 

  9. M. Saleem, Q.M. Al-Mdallal, Q.A. Chaudhry, S. Noreen, A. Haider, Partial slip effects on the peristaltic motion of an upper-convected Maxwell fluid through an irregular channel. SN Appl. Sci. 2, 1–14 (2020)

    Google Scholar 

  10. T. Hayat, N. Ali, S. Asghar, Hall effects on peristaltic flow of a Maxwell fluid in a porous medium. Phys. Lett. A 363, 397–403 (2007)

    Article  ADS  Google Scholar 

  11. I.M. Eldesoky, A. Mousa, Peristaltic flow of a compressible non-Newtonian Maxwellian fluid through porous medium in a tube. Int. J. Biomath. 3, 255–275 (2010)

    Article  MathSciNet  Google Scholar 

  12. I. Eldesoky, S.I. Abdelsalam, W. El-Askary, M. Ahmed, Concurrent development of thermal energy with magnetic field on a particle-fluid suspension through a porous conduit. BioNanoScience 9, 186–202 (2019)

    Article  Google Scholar 

  13. R. Ellahi, F. Hussain, F. Ishtiaq, A. Hussain, Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: an application to upgrade industrial sieves/filters. Pramana 93, 34 (2019)

    Article  ADS  Google Scholar 

  14. M.V. Krishna, A.J. Chamkha, "MHD peristaltic rotating flow of a couple stress fluid through a porous medium withwall and slip effects. Spec. Top & Rev. Porous Media Int. J 10(3), 245–258 (2019)

    Article  Google Scholar 

  15. S. Noreen, D. Tripathi, Heat transfer analysis on electroosmotic flow via peristaltic pumping in non-Darcy porous medium. Therm. Sci. Eng. Prog. 11, 254–262 (2019)

    Article  Google Scholar 

  16. A. Riaz, S.U.-D. Khan, A. Zeeshan, S.U. Khan, M. Hassan, T. Muhammad, Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium. J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09454-9

    Article  Google Scholar 

  17. R. Yousif, H.A. Ali, Temperature-dependent viscosity effect on the peristaltic transport of (MHD) blood flow ree-eyring fluid through porous medium in an inclined asymmetric channel. Al-Qadisiyah J. Pure Sci. 25, 16–34 (2020)

    Article  Google Scholar 

  18. M.A. Ezzat, A. El-Bary, M. Morsey, Space approach to the hydro-magnetic flow of a dusty fluid through a porous medium. Comput. Math. Appl. 59, 2868–2879 (2010)

    Article  MathSciNet  Google Scholar 

  19. M. Ezzat, A. El-Bary, S. Ezzat, Combined heat and mass transfer for unsteady MHD flow of perfect conducting micropolar fluid with thermal relaxation. Energy Convers. Manage. 52, 934–945 (2011)

    Article  Google Scholar 

  20. M. Ezzat, A. El-Bary, MHD free convection flow with fractional heat conduction law. Magnetohydrodynamics 48, 587–606 (2012)

    Article  Google Scholar 

  21. H. Alotaibi, S. Althubiti, M.R. Eid, K.L. Mahny, Numerical treatment of MHD flow of casson nanofluid via convectively heated non-linear extending surface with viscous dissipation and suction/injection effects. Comput. Mater. Contin 66, 229–245 (2021)

    Article  Google Scholar 

  22. K.S. Mekheimer, S.R. Komy, S.I. Abdelsalam, Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel. Chinese Phys. B 22, 124702 (2013)

    Article  Google Scholar 

  23. M. Kothandapani, J. Prakash, Effect of radiation and magnetic field on peristaltic transport of nanofluids through a porous space in a tapered asymmetric channel. J. Magn. Magn. Mater. 378, 152–163 (2015)

    Article  ADS  Google Scholar 

  24. M. Ezzat, A. El-Bary, Magneto-thermoelectric viscoelastic materials with memory-dependent derivative involving two-temperature. Int. J. Appl. Electromagn. Mech 50, 549–567 (2016)

    Article  Google Scholar 

  25. R.M. Abumandour, I.M. Eldesoky, E.T. Abdelwahab, On the performance of peristaltic pumping for the MHD slip flow under the variation of elastic walls features. ERJ. Eng. Res. J. 43, 231–244 (2020)

    Article  Google Scholar 

  26. S.S. Hasen, A.M. Abdulhadi, MHD effect on peristaltic transport for rabinowitsch fluid through a porous medium in cilia channel. Iraqi J. Sci. 61(6), 1461–1472 (2020)

    Article  Google Scholar 

  27. K. Lotfy, W. Hassan, A. El-Bary, M.A. Kadry, Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation. Results Phys. 16, 102877 (2020)

    Article  Google Scholar 

  28. S. Pandey, M. Chaube, Study of wall properties on peristaltic transport of a couple stress fluid. Meccanica 46, 1319–1330 (2011)

    Article  MathSciNet  Google Scholar 

  29. S. Hina, M. Mustafa, T. Hayat, N.D. Alotaibi, On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl. Math. Comput. 263, 378–391 (2015)

    MathSciNet  MATH  Google Scholar 

  30. S. Hina, MHD peristaltic transport of Eyring-Powell fluid with heat/mass transfer, wall properties and slip conditions. J. Magn. Magn. Mater. 404, 148–158 (2016)

    Article  Google Scholar 

  31. I. Eldesoky, R. Abumandour, M. Kamel, E. Abdelwahab, The combined influences of heat transfer, compliant wall properties and slip conditions on the peristaltic flow through tube. SN Appl. Sci. 1, 897 (2019)

    Article  Google Scholar 

  32. S. Nadeem, S. Akram, Peristaltic flow of a Maxwell model through porous boundaries in a porous medium. Transp. Porous Media 86, 895–909 (2011)

    Article  MathSciNet  Google Scholar 

  33. K.S. Mekheimer, A. Abdel-Wahab, Effect of wall compliance on compressible fluid transport induced by a surface acoustic wave in a microchannel. Numer. Methods Partial Diff. Equ. 27, 621–636 (2011)

    Article  MathSciNet  Google Scholar 

  34. Y. Fung, C. Yih, Peristaltic transport. J. Appl. Mech. 35(4), 669–675 (1968)

    Article  ADS  Google Scholar 

  35. A. Aarts, G. Ooms, Net flow of compressible viscous liquids induced by travelling waves in porous media. J. Eng. Math. 34, 435–450 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the Taif University research supporting project number (TURSP-2020/304), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, I.M., and HM.; methodology, IM., HA., HM, MS, and AA; software, JI.; validation, YR., and HA.; formal analysis, YA., HA., JI and UA; investigation,, IM; resources, HM, and AA.; data curation, MS.; writing—original draft preparation, IM., HA., HM, MS, and AA.; writing—review and editing, IM., and HA.; visualization, AA.; supervision, IM.; project administration, IS. and HM. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hammad Alotaibi.

Ethics declarations

Conflicts Of Interest

The authors declare no conflict of interest

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldesoky, I.M., Alotaibi, H., Raslan, H.M. et al. The Maxwellian peristaltic transport of the MHD flow via elastic channel. Eur. Phys. J. Plus 137, 388 (2022). https://doi.org/10.1140/epjp/s13360-022-02549-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02549-2

Navigation