Skip to main content
Log in

Tomography in loop quantum cosmology

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analyze the tomographic representation for the Friedmann–Robertson–Walker (FRW) model within the Loop Quantum Cosmology framework. We focus on the Wigner quasi-probability distributions associated with Gaussian and Schrödinger cat states, and then, by applying a Radon integral transform for those Wigner functions, we are able to obtain the symplectic tomograms which define measurable probability distributions that fully characterize the quantum model of our interest. By appropriately introducing the quantum dispersion for a rotated and squeezed quadrature operator in terms of the position and momentum, we efficiently interpret the properties of such tomograms, being consequent with Heisenberg’s uncertainty principle. We also obtain, by means of the dual tomographic symbols, the expectation value for the volume operator, which coincides with the values reported in the literature. We expect that our findings result interesting as the introduced tomographic representation may be further benefited from the well-developed measure techniques in the areas of Quantum optics and Quantum information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Mancini, V.I. Man’ko, P. Tombesi, Wigner function and probability distribution for shifted and squeezed quadratures. Quantum Semiclass. Opt. 7, 615 (1995)

    Article  ADS  Google Scholar 

  2. S. Mancini, V.I. Man’ko, P. Tombesi, Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 213, 1 (1996). arXiv:quant-ph/9603002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. V.I. Man’ko, G. Marmo, A. Simoni, E.C.G. Sudarshan, F. Ventriglia, A tomographic setting for Quasi-distribution function. Rep. Math. Phys. 61, 337 (2008). arXiv:quant-ph/0604148v2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. A. Ibort, V.I. Man’ko, G. Marmo, A. Simoni, F. Ventriglia, An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79, 065013 (2009). arXiv:0904.4439 [quant-ph]

    Article  ADS  MATH  Google Scholar 

  5. M. Asorey, A. Ibort, G. Marmo, F. Ventriglia, Quantum tomography 20 years later. Phys. Scr. 90, 074031 (2015). arXiv:1510.08140

    Article  ADS  Google Scholar 

  6. C.K. Zachos, D.B. Fairlie, T.L. Curtright, Quantum Mechanics ins Phase Space: An Overview with Selected Papers (World-Scientific, Singapure, 2005)

    Book  MATH  Google Scholar 

  7. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization I & II. Ann. Phys. 111, 61 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. M. Bordemann, Deformation quantization: a survey. J. Phys. Conf. Ser. 103, 012002 (2008)

    Article  Google Scholar 

  9. S. Mancini, V.I. Man’ko, P. Tombesi, Classical-like description of quantum dynamics by means of symplectic tomography. Found. Phys. 27, 801 (1997). arXiv:quant-ph/9609026

    Article  ADS  MathSciNet  Google Scholar 

  10. M.A. Man’ko, V.I. Man’ko, R. Vilela-Mendes, Tomograms and other transforms: a unified view. J. Phys. A Math. Gen. 34, 8321 (2001). arXiv:math-ph/0101025

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. G.M. D’Ariano, M.G.A. Paris, M.F. Sacchi, Quantum tomography. Adv. Imag. Electron Phys. 128, 205–308 (2003). arXiv:quant-ph/0302028

    Article  Google Scholar 

  12. J. Helsen, J. Battistel, B.M. Terhal, Spectral quantum tomography. npj Quantum Inf. 5, 74 (2019). arXiv:1904.00177

    Article  ADS  Google Scholar 

  13. M.A. Man’ko, V.I. Man’ko, N.C. Thanh, Tomographic-probability representation of the quantum scalar field. J. Russ. Laser Res. 30, 1 (2009)

    Article  Google Scholar 

  14. J. Berra-Montiel, R. Cartas-Fuentevilla, Deformation quantization and the tomographic representation of quantum fields. IJGMMP 14, 2050207 (2020). arXiv:2006.07688 [hep-th]

    Google Scholar 

  15. V.I. Man’ko, R.V. Mendes, Lyapunov exponent in quantum mechanics. A phase-space approach. Phys. D 145, 330–348 (2000). arXiv:quant-ph/0002049

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Capozziello, V.I. Man’ko, G. Marmo, C. Stornaiolo, A tomographic description for classical and quantum cosmological perturbations. Phys. Scr. 80, 045901 (2009). arXiv:0905.1244 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  17. S. Capozziello, V.I. Man’ko, G. Marmo, C. Stornaiolo, Tomographic representation of minisuperspace quantum cosmology and Noether symmetries. Gen. Relativ. Gravit. 40, 2627 (2008). arXiv:0706.3018 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. V.I. Man’ko, G. Marmo, C. Stornaiolo, Radon transform of the Wheeler-De Witt equation and tomography of quantum states of the universe. Gen. Relativ. Gravit. 37, 99 (2005). arXiv:gr-qc/0307084

    Article  ADS  MATH  Google Scholar 

  19. C. Stornaiolo, Tomographic analysis of quantum and classical de Sitter cosmological models. Int. J. Mod. Phys. D 28, 2040009 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. C. Stornaiolo, Emergent classical universes from initial quantum states in a tomographical description. IJGMMP 17, 2050167 (2020). arXiv:2007.03726 [gr-qc]

    ADS  MathSciNet  Google Scholar 

  21. C. Stornaiolo, The tomographic Wheeler De Witt equation. Preprints (2021) 2021020076. https://www.preprints.org/manuscript/202102.0076/v1

  22. A. Ashtekar, T. Pawlowski, P. Singh, Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). arXiv:gr-qc/0607039

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Ashtekar, M. Bojowald, J. Lewandowski, Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003). arXiv:gr-qc/0304074

    Article  MathSciNet  Google Scholar 

  24. A. Ashtekar, A. Corichi, P. Singh, Robustness of key features of loop quantum cosmology. Phys. Rev. D 77, 024046 (2008). arXiv:0710.3565 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  25. A. Ashtekar, P. Singh, Loop quantum cosmology: a status report. Class. Quantum Grav. 28, 213001 (2011). arXiv:1108.0893 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. A. Ashtekar, E. Bianchi, A short review of loop quantum gravity. Rep. Prog. Phys. 84, 042001 (2021). arXiv:2104.04394 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  27. C.J. Fewster, H. Sahlmann, Phase space quantization and loop quantum cosmology: a Wigner function for the Bohr-compactified real line. Class. Quantum Grav. 25, 225015 (2008). arXiv:0804.2541v1 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. L. Perlov, Uncertainty principle in loop quantum cosmology by Moyal formalism. J. Math. Phys. 59, 032304 (2018). arXiv:1610.06532v4 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. J. Berra-Montiel, A. Molgado, Polymer quantum mechanics as a deformation quantization. Class. Quantum Grav. 36, 025001 (2019). arXiv:1805.05943v2 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J. Berra-Montiel, A. Molgado, Quasi-probability distributions in Loop Quantum Cosmology. Class. Quantum Grav. 37, 215003 (2020). arXiv:2007.01324 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. Stottmeister, T. Thiemann, Coherent states, quantum gravity, and the Born- Oppenheimer approximation. II. Compact Lie groups. J. Math. Phys. 57, 073501 (2016). arXiv:1504.02170

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. A. Stottmeister, T. Thiemann, Coherent states, quantum gravity, and the Born-Oppenheimer approximation. III.: Applications to loop quantum gravity. J. Math. Phys. 57, 083509 (2016). arXiv:1504.02171

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. P. Malkiewicz, W. Piechocki, Energy scale of the big bounce. Phys. Rev. D 80, 063506 (2009). arXiv:0903.4352 [gr-qc]

    Article  ADS  Google Scholar 

  34. P. Dzierzak, P. Malkiewicz, W. Piechocki, Turning big bang into big bounce: 1. Classical dynamics. Phys. Rev. D 80, 104001 (2009). arXiv:0907.3436

    Article  ADS  Google Scholar 

  35. K. Giesel, T. Thiemann, Algebraic quantum gravity (AQG): IV. Reduced phase space quantisation of loop quantum gravity. Class. Quantum Grav. 27, 175009 (2010). arXiv:0711.0119

    Article  ADS  MATH  Google Scholar 

  36. T. Thiemann, Introduction to Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  37. A. Perez, Regularization ambiguities in loop quantum gravity. Phys. Rev. D 73, 044007 (2006). arXiv:gr-qc/0509118

    Article  ADS  MathSciNet  Google Scholar 

  38. P. Dzierzak, J. Jezierski, P. Malkiewicz, W. Piechocki, The minimum length problem of loop quantum cosmology. Acta Phys. Pol. B 41, 717 (2010). arXiv:0810.3172 [gr-qc]

    MathSciNet  MATH  Google Scholar 

  39. P. Malkiewicz, W. Piechocki, P. Dzierzak, Bianchi I model in terms of nonstandard loop quantum cosmology: quantum dynamics. Class. Quantum Grav. 28, 085020 (2010). arXiv:1010.2930 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. P. Malkiewicz, W. Piechocki, Turning big bang into big bounce: II. Quantum dynamics. Class. Quantum Grav. 27, 225018 (2010). arXiv:0908.4029

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. P.A.M. Dirac, Generalized Hamiltonian dynamics. Can. J. Math. 2, 129 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  42. J.P. Gazeau, J. Mielczarek, W. Piechocki, Quantum states of the bouncing universe. Phys. Rev. D 87, 123508 (2013). arXiv:1303.1687 [gr-qc]

    Article  ADS  Google Scholar 

  43. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I (Academic Press, United States, 1975)

    MATH  Google Scholar 

  44. J. Mielczarek, W. Piechocki, Evolution in bouncing quantum cosmology. Class. Quantum Grav. 29, 065022 (2012). arXiv:1107.4686 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. J. Berra-Montiel, A. Molgado, Polymeric quantum mechanics and the zeros of the Riemann zeta function. IJGMMP 15, 1850095 (2018). arXiv:1610.01957

    ADS  MathSciNet  MATH  Google Scholar 

  46. N.C. Dias, J.N. Prata, Wigner functions with boundaries. J. Math. Phys. 43, 4602 (2002). arXiv:quant-ph/0012140

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. N.C. Dias, J.N. Prata, Deformation quantization of confined systems. Int. J. Quantum Inf. 5, 257 (2007). arXiv:quant-ph/0612022

    Article  MATH  Google Scholar 

  48. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover Publications, New York, 1950)

    MATH  Google Scholar 

  49. J.E. Moyal, Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99–124 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. II (Academic Press, United States, 1975)

    MATH  Google Scholar 

  51. R.L. Stratonovich, On the statistical interpretation of quantum theory. Sov. Phys. JETP 31, 1012 (1956)

    MathSciNet  Google Scholar 

  52. G. B. Folland, Harmonic Analysis in Phase Space (Princeton University Press, Princeton NJ, 1989)

  53. T.L. Curtright, D.B. Fairlie, C.K. Zachos, A Concise Treatise on Quantum Mechanics in Phase Space (World Scientific, Singapore, 2014)

    Book  MATH  Google Scholar 

  54. A. Kenfack, K. Zyczkowski, Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclass. Opt. 6, 396 (2004). arXiv:quant-ph/0406015

    Article  ADS  MathSciNet  Google Scholar 

  55. J. Mielczarek, W. Piechocki, Gaussian state for the bouncing quantum cosmology. Phys. Rev. D 86, 8 (2012). arXiv:1108.0005 [gr-qc]

    Article  MATH  Google Scholar 

  56. P. Diener, B. Gupt, M. Megevand, P. Singh, Numerical evolution of squeezed and non-Gaussian states in loop quantum cosmology. Class. Quantum Grav. 31, 16 (2014). arXiv:1406.1486 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  57. W.H. Zurek, S. Habib, J.P. Paz, Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)

    Article  ADS  Google Scholar 

  58. R.L. Hudson, When is the Wigner quasi-probability density non-negative? Rep. Math. Phys. 6, 249 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. C. Kiefer, C. Schell, Interpretation of the triad orientations in loop quantum cosmology. Class. Quantum Grav. 30, 035008 (2013). arXiv:1210.0418 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. G.M. D’Ariano, S. Mancini, V.I. Man’ko, P. Tombesi, Reconstructing the density operator by using generalized field quadratures. Quantum Semiclass. Opt. 8, 1017 (1996). arXiv:quant-ph/9606034

    Article  ADS  Google Scholar 

  61. K. Vogel, H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847 (1989)

    Article  ADS  Google Scholar 

  62. O.V. Man’ko, V.I. Man’ko, O.V. Pilyavets, Probability representation of classical states. J. Russ. Laser Res. 26, 429 (2005)

    Article  Google Scholar 

  63. V. D’Auria, S. Fornaro, A. Porzio, S. Solimeno, S. Olivares, M.G.A. Paris, Full characterization of Gaussian bipartite entangled states by a single Homodyne detector. Phys. Rev. Lett. 102, 020502 (2009). arXiv:0805.1993 [quant-ph]

    Article  ADS  Google Scholar 

  64. D.T. Smithey, M. Beck, M.G. Raymer, A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)

    Article  ADS  Google Scholar 

  65. R.A. Brewster, J.D. Franson, Generalized delta functions and their use in quantum optics. J. Math. Phys. 59, 012102 (2018). arXiv:1605.04321 [quant-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. D.A. Craig, P. Singh, Consistent probabilities in loop quantum cosmology. Class. Quantum Grav. 30, 205008 (2013). arXiv:1306.6142 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support from CONACYT-Mexico under the project CB-2017-283838.

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasel Berra–Montiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berra–Montiel, J., Molgado, A. Tomography in loop quantum cosmology. Eur. Phys. J. Plus 137, 283 (2022). https://doi.org/10.1140/epjp/s13360-022-02504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02504-1

Navigation