Skip to main content
Log in

A hybrid (γ, n) and (n, γ) transmutation study for long-lived fission products and thermal analysis of converter cooling system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The goal of this work is to optimize the hybrid (γ, n) and (n, γ) transmutation system of long-lived fission products (LLFPs), particularly cesium and technetium, to stable or short-lived nuclei based on an electron accelerator by MCNPX code. Photons and neutrons produced by the interaction of electrons with high atomic number materials create a mixed field. In this study, design parameters such as geometry, materials, target dimensions, and configurations have been optimized to enhance the intensity of mixed field to increase the transmutation rate based on (γ, n) and (n, γ) reactions simultaneously. We have designed a system that uses the photons produced to transmute cesium based on the 135Cs (γ, n) 134Cs and 137Cs (γ, n) 136Cs reactions, and the neutrons produced to transmute the technetium based on the 99Tc (n, γ) 100Tc reaction. Furthermore, we have analyzed the temperature of the converter and heat transfer under steady-state thermal (SST) using ANSYS software. The designed system using a duct with a hydraulic diameter of 1.5 cm and 2 m/s for cooling water inlet velocity provides a suitable cooling process with a maximum converter temperature of about 337 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barber WC, George WD, (1959), Neutron Yields from Targets Bombarded by Electrons, Physical review volume 116, number 6 december15, 1959.

  2. Bayly JG, Brown F, Hall GR, Walter AJ, (1958). The cross-section of the reaction 134Cs (n, γ) 135Cs and the half-life of 134Cs. J. Inorg. Nucl. Chem., 1958, Vol. 5, pp. 259 to 263. Pergamon Press Ltd., London.

  3. Bergman TL, Lavine AS, Incropera FP, Dewitt DP, (2011), Fundamentals of Heat and Mass Transfer, Seventh edition, JOHN WILEY & SONS, United States of America, PP 377- 417.

  4. Berman BL, Fultz SC, (1975), Measurements of the giant dipole resonance with monoenergetic photons, Reviews of Modern Physics, Vol. 47, No. 3, July 1975.

  5. Chadwick M, Oblozinsky P, Blokhin A, (2000). Handbook on photonuclear data for applications Cross sections and spectra. IAEA-TECDOC-1178-IAEA, Vienna.

  6. Chomaz P, (1997), Collective excitations in nuclei. Ecole Joliot Curie.

  7. S. Dietrich, B. Berman, (1988), Atlas of photoneutron cross section obtained with monoenergetic photons. ATOMIC DATA AND NUCLEAR DATA TABLES 38, 199–338 (1988)

    Article  ADS  Google Scholar 

  8. S. Eidelman et al., Review of particle physics. Phys. Lett. B. 592(1–4), 1–5 (2004)

    Article  ADS  Google Scholar 

  9. Ferdinande H, Knuyt G, Vijver VD and Jacobs R, (1970), Numerical calculation of absolute forward thick-target bremsstrahlung spectra, nuclear instruments and methods.

  10. R.W. Fox, A.T. McDonald, P.J. Pritchard, Introduction to fluid mechanics (Wiley, New Delhi, 2012)

    MATH  Google Scholar 

  11. Gales S et al (2018), Extreme light infrastructure-nuclear physics pillar (ELI-NP): new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams. Rep. Prog. Phys. 81, (9) 094301.

  12. Gupta M et al. (2010). Calculation of radiation length in materials.

  13. T. Hayakawa, S. Miyamoto, R. Hajima, T. Shizuma, S. Amano, S. Hashimoto, T. Misawa, Proposal for selective isotope transmutation of long-lived fission products using quasi-monochromatic c-ray beams. J. Nucl. Sci. Technol. 53(12), 2064–2071 (2016)

    Article  Google Scholar 

  14. https://www-nds.iaea.org/exfor/endf.htm

  15. https://tendl.web.psi.ch/tendl_2019/tendl2019.html.

  16. S. Kailas, M. Hemalatha, A. Saxena, Nuclear transmutation strategies for management of long-lived fission products. Indian Acad. Sci. (2015). https://doi.org/10.1007/s12043-015-1063-Z

    Article  Google Scholar 

  17. W. Luo et al., X-ray generation from slanting laser-Compton scattering for future energy-tunable shanghai laser electron gamma source. Appl. Phys. B 101(4), 761–771 (2010)

    Article  ADS  Google Scholar 

  18. M. Mamtimin, F. Harmon, V. Starovoitova, Electron linac based mixed-field transmutation of 129I. Nucl. Inst. Methods Phys. Res. B 344(2015), 11–15 (2015)

    Article  ADS  Google Scholar 

  19. Pelowitz DB, (2008), MCNPX USER’S MANUAL Version 2.6.0, LA-CP-07–1473.

  20. Petwal VC, (2007), Optimization studies of photo-neutron production in high-Z metallic targets using high energy electron beam for ADS and transmutation. Indian Academy of Sciences.

  21. H.U. Rehman, J. Lee, Y. Kim, Optimization of the laser-Compton scattering spectrum for the transmutation of high-toxicity and long-living nuclear waste. Ann. Nucl. Energy 105(2017), 150–160 (2017)

    Article  Google Scholar 

  22. H.U. Rehman, J. Lee, Y. Kim, Comparison of the laser-Compton scattering and the conventional bremsstrahlung X-rays for photonuclear transmutation. Int. J. Energy Res. 42(1), 236–244 (2018)

    Article  Google Scholar 

  23. D. Santonocito, Y. Blumenfeld, (2006), Evolution of the Giant Dipole Resonance Properties with Excitation Energy. Eur. Phys. J. A 30, 183–202 (2006). https://doi.org/10.1140/epja/i2006-10116-7

    Article  ADS  Google Scholar 

  24. B. Sarer, M.E. Korkmaz, M. Gunay, A. Aydin, Monte Carlo studies in accelerator-driven systems for transmutation of high-level nuclear waste. Energy Convers. Manage. 49(2008), 1966–1971 (2008)

    Article  Google Scholar 

  25. Swanson WP, (1979), Radiological safety aspects of the operation of electron linear accelerators, technical reports series no. 188, Vienna.

  26. Varlamov AV, Varlamov VV, Rudenko DS, Stepanov ME, (1999), Atlas of Giant Dipole Resonances Parameters and Graphs of Photonuclear Reaction Cross Sections, International Atomic Energy Agency.

  27. Westlen D (2001) A cost benefit analysis of an accelerator driven transmutation system. Stockholm: Royal Institute of Technology; 2001.

  28. White MC, (2000), Development and Implementation of Photonuclear Cross-Section Data for Mutually Coupled Neutron-Photon Transport Calculations in the Monte Carlo N-Particle (MCNP) Radiation Transport Code. Los Alamos National Laboratory, LA-13744-T.

  29. White MC, (2001), A Brief Primer for Simulating Photonuclear Interactions with MCNP(X). Los Alamos National Laboratory, LA-UR-01–1599, http://lib-www.lanl.gov/la-pubs/00357020.pdf.

  30. W. Yang, Y. Kim, R. Hill, T. Taiwo, H. Khalil, Long-lived fission product transmutation studies. Nucl. Sci. Eng. 146, 291–318 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The research was funded by the Research Council of Arak University, so the authors are grateful to the council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Salajeghe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salajeghe, B., Pourimani, R. & Hassanzadeh, M. A hybrid (γ, n) and (n, γ) transmutation study for long-lived fission products and thermal analysis of converter cooling system. Eur. Phys. J. Plus 137, 248 (2022). https://doi.org/10.1140/epjp/s13360-022-02484-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02484-2

Navigation