Skip to main content
Log in

Stability of circular geodesics in equatorial plane of Kerr spacetime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We analyze the stability of circular geodesics for timelike as well as null geodesics of the Kerr BH spacetime with rotation parameter on the equatorial plane by Lyapunov stability analysis. Also, we verify the results of stability by presenting the phase portrait for both timelike and null geodesics. Further, by reviewing the Kosambi–Cartan–Chern (KCC) theory, we analyze the Jacobi stability for Kerr spacetime and present a comparative study of the methods used for stability analysis of geodesics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statements

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. J.B. Hartle, Gravity: An Introduction to Einstein’s General Relativity (American Association of Physics Teachers, Maryland, 2003)

    Google Scholar 

  2. R.M. Wald, General Relativity (University of Chicago, Chicago, 1984)

    Book  Google Scholar 

  3. S. Chandrasekhar, The Mathematical Theory of Black Holes, vol. 69 (Oxford University Press, Oxford, 1998)

  4. H. Abolghasem, Stability of circular orbits in Schwarzschild spacetime. Int. J. Differ. Equ. Appl. 12(3), 131–147 (2013)

    MATH  Google Scholar 

  5. K. Weber, Kerr geometry and rotating black holes (2018)

  6. R. Fujita, W. Hikida, Analytical solutions of bound timelike geodesic orbits in Kerr spacetime. Class. Quantum Gravity 26(13), 135002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.-A. Marck, Short-cut method of solution of geodesic equations for Schwarzchild black hole. Class. Quantum Gravity 13(3), 393 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Hackmann, Geodesic equations in black hole space-times with cosmological constant. PhD thesis, Universität Bremen (2010)

  9. V. Lakshmikantham, S. Leela, A. A. Martynyuk. Stability Analysis of Nonlinear Systems. Springer (1989)

  10. S. Giri, H. Nandan, Stability analysis of geodesics and quasinormal modes of a dual stringy black hole via Lyapunov exponents. Gen. Relativ. Gravit. 53(8), 1–27 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Cardoso, A.S. Miranda, E. Berti, H. Witek, V.T. Zanchin, Geodesic stability, Lyapunov exponents, and Quasinormal modes. Phys. Rev. D 79(6), 064016 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Sastry. Lyapunov stability theory, in Nonlinear Systems, pp. 182–234. Springer (1999)

  13. I. Goldhirsch, P.-L. Sulem, S.A. Orszag, Stability and Lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica D 27(3), 311–337 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Eberly, Stability Analysis for Systems of Differential Equations (Geometric Tools, LLC, 2008)

  15. M. R Roussel. Stability analysis for ODEs. Nonlinear Dynamics, Lecture Notes, University Hall, Canada (2005)

  16. C.G. Boehmer, T. Harko, S.V. Sabau, Jacobi stability analysis of dynamical systems-applications in gravitation and cosmology. Adv. Theor. Math. Phys. 16(4), 1145–1196 (2012)

    Article  MathSciNet  Google Scholar 

  17. M. Sandri, Numerical calculation of Lyapunov exponents. Math. J. 6(3), 78–84 (1996)

    Google Scholar 

  18. T. Harko, P. Pantaragphong, S.V. Sabau, Kosambi–Cartan–Chern (KCC) theory for higher-order dynamical systems. Int. J. Geom. Methods Modern Phys. 13(02), 1650014 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. T. Yajima, H. Nagahama, Nonlinear dynamical systems and KCC-theory. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 24(1), 179–189 (2008)

    MathSciNet  MATH  Google Scholar 

  20. M.K. Gupta, C.K. Yadav, KCC theory and its application in a tumor growth model. Math. Methods Appl. Sci. 40(18), 7470–7487 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  21. H. Abolghasem, Jacobi stability of Hamiltonian systems. Int. J. Pure Appl. Math. 87(1), 181–194 (2013)

    Article  Google Scholar 

  22. H. Abolghasem, Liapunov stability versus Jacobi stability. J. Dyn. Syst. Geometric Theories 10(1), 13–32 (2012)

    Article  MathSciNet  Google Scholar 

  23. V. Moncrief, Stability of Reissner–Nordström black holes. Phys. Rev. D 10(4), 1057 (1974)

    Article  ADS  Google Scholar 

  24. A. Aceña, E. López, F. Aldás, Circular geodesics stability in a static black hole in new massive gravity. Galaxies 8(1), 14 (2020)

    Article  ADS  Google Scholar 

  25. P. Pradhan, Stability analysis and quasinormal modes of Reissner–Nordstrøm space-time via Lyapunov exponent. Pramana 87(1), 1–9 (2016)

    Article  ADS  Google Scholar 

  26. S. Giri, H. Nandan, L.K. Joshi, S.D. Maharaj, Stability analysis of circular orbits around a charged BTZ black hole spacetime in a nonlinear electrodynamics model via lyapunov exponents. Mod. Phys. Lett. A 36(31), 2150220 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Sedin. Stability analysis of equilibrium points and symmetry curves in discrete cosmological models (2016)

  28. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (CRC Press, Boca Raton, 1998)

    Book  Google Scholar 

  29. R. Morgan, Linearization and stability analysis of nonlinear problems. Rose-Hulman Undergrad. Math. J. 16(2), 5 (2015)

    MathSciNet  Google Scholar 

  30. D. D. Kosambi. Parallelism and path-spaces, in DD Kosambi, pp. 59–70. Springer, (2016)

  31. É. Cartan. Observations sur le mémoire précédent, in D.D. Kosambi, pp. 71–74. Springer (2016)

  32. S.-S. Chern, C. Chevalley, Elie Cartan and his mathematical work. Bull. Am. Math. Soc. 58(2), 217–250 (1952)

    Article  MathSciNet  Google Scholar 

  33. T. Harko, P. Pantaragphong, S. Sabau. A new perspective on the Kosambi–Cartan–Chern theory, and its applications. arXiv preprint arXiv:1509.00168 (2015)

  34. M. Visser. The Kerr spacetime: a brief introduction. arXiv preprint arXiv:0706.0622 (2007)

  35. D. Pugliese, H. Quevedo, R. Ruffini, Equatorial circular motion in Kerr spacetime. Phys. Rev. D 84(4), 044030 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.S. would like to thank University Grants Commission \(\left( UGC\right) \), New Delhi, India for providing the financial support as a Junior Research Fellow through UGC-Ref.No. 1060/CSIR-UGC NET-JUNE2018. H.N. thankfully acknowledges the financial support provided by Science and Engineering Research Board(SERB), India through grant no. EMR/2017/000339. The authors also acknowledge the facilities available at ICARD, Gurukula Kangri (Deemed to be University) Haridwar those were used during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemwati Nandan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Nandan, H., Joshi, L.K. et al. Stability of circular geodesics in equatorial plane of Kerr spacetime. Eur. Phys. J. Plus 137, 263 (2022). https://doi.org/10.1140/epjp/s13360-022-02477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02477-1

Navigation