Skip to main content
Log in

Weakly interacting Bose gases with generalized uncertainty principle: Effects of quantum gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate quantum gravity corrections due to the generalized uncertainty principle on three-dimensional weakly interacting Bose gases at both zero and finite temperatures using the time-dependent Hatree–Fock–Bogoliubov theory. We derive useful formulas for the depletion, the anomalous density, and some thermodynamic quantities such as the chemical potential, the ground-state energy, the free energy, and the superfluid density. It is found that the presence of a minimal length leads to modify the fluctuations of the condensate and its thermodynamic properties in the weak and strong quantum gravitational regimes. Unexpectedly, the interplay of quantum gravity effects and quantum fluctuations stemming from interactions may lift both the condensate and the superfluid fractions. We show that quantum gravity minimizes the interaction force between bosons leading to the formation of ultradilute Bose condensates. Our results which can be readily probed in current experiments may offer a new attractive possibility to understand gravity in the framework of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

The data generated and/or analyzed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

References

  1. R. Penrose, On the gravitization of quantum mechanics 1: quantum state reduction. Found. Phys. 44, 557 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Kafri, J.M. Taylor, G.J. Milburn, A classical channel model for gravitational decoherence. New J. Phys. 16, 065020 (2014)

    Article  ADS  MATH  Google Scholar 

  3. S. Bose, A. Mazumdar, G.W. Morley, H. Ulbricht, M. Torós, M. Paternostro, A. Geraci, P. Barker, M. Kim, G. Milburn, Phys. Rev. Lett. 119, 240401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. C. Marletto, V. Vedral, Phys. Rev. Lett. 119, 240402 (2017)

    Article  ADS  Google Scholar 

  5. T. Krisnanda, M. Zuppardo, M. Paternostro, T. Paterek, Phys. Rev. Lett. 119, 120402 (2017)

    Article  ADS  Google Scholar 

  6. C. Marletto, V. Vedral, Phys. Rev. D 98, 046001 (2018)

    Article  ADS  Google Scholar 

  7. R. Howl, V. Vedral, D. Naik, M. Christodoulou, C. Rovelli, A. Iyer, Phys. Rev. X Quantum 2, 010325 (2021)

    Google Scholar 

  8. K. Shiraishi, Prog. Theor. Phys. 77, 975 (1987)

    Article  ADS  Google Scholar 

  9. S. Das, E.C. Vagenas, Phys. Rev. Lett. 101, 221301 (2008)

    Article  ADS  Google Scholar 

  10. F. Briscese, M. Grether, M. de Llano, Europhys. Lett. 98, 6 (2012)

    Article  Google Scholar 

  11. F. Briscese, Phys. Lett. B 718, 214 (2012)

    Article  ADS  Google Scholar 

  12. J. Hansson, S. Francois, Int. J. Mod. Phys. D 26, 1743003 (2017)

    Article  ADS  Google Scholar 

  13. M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, H. Müller, Nat. Phys. 13, 938 (2017)

    Article  Google Scholar 

  14. S.A. Haine, New J. Phys. 23, 033020 (2021)

    Article  ADS  Google Scholar 

  15. M. Maggiore, Phys. Lett. B 304, 65 (1993)

    Article  ADS  Google Scholar 

  16. M. Maggiore, Phys. Lett. B 319, 83 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Maggiore, Phys. Rev. D 49, 5182 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  18. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  19. F. Scardigli, Phys. Lett. B 452, 39 (1999)

    Article  ADS  Google Scholar 

  20. L.N. Chang, D. Minic, N. Okamura, T. Takeuchi, Phys. Rev. D 65, 125028 (2002)

    Article  ADS  Google Scholar 

  21. A.F. Ali, S. Das, E.C. Vagenas, Phys. Rev. D 84, 044013 (2011)

    Article  ADS  Google Scholar 

  22. M. Sprenger, P. Nicolini, M. Bleicher, Class. Quantum Grav. 28, 235019 (2011)

    Article  ADS  Google Scholar 

  23. I. Pikovski, M.R. Vanner, M. Aspelmeyer, M. Kim, C. Brukner, Nat. Phys. 8, 393 (2012)

  24. V. Husain, S. Seahra, S. Webster, Phys. Rev. D 88, 024014 (2013)

    Article  ADS  Google Scholar 

  25. P. Pedram, Phys. Rev. D 91, 063517 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Z. Feng, H.L. Li, X.T. Zu, S.Z. Yang, Eur. Phys. J. C 76, 1 (2016)

    Article  Google Scholar 

  27. H. Shababi, W.S. Chung, Phys. Lett. B 770, 445 (2017)

    Article  ADS  Google Scholar 

  28. G. Gecim, Y. Sucu, Phys. Lett. B 773, 391 (2017)

    Article  ADS  Google Scholar 

  29. F. Scardigli, G. Lambiase, E.C. Vagenas, Phys. Lett. B 767, 242 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. M.C. Braidotti, Z.H. Musslimani, C. Conti, Phys. D 338, 34 (2017)

    Article  Google Scholar 

  31. P. Bosso, S. Das, I. Pikovski, M.R. Vanner, Phys. Rev. A 96, 023849 (2017)

    Article  ADS  Google Scholar 

  32. R. Casadio, F. cardigli, Phys. Lett. B 807, 135558 (2020)

    Article  MathSciNet  Google Scholar 

  33. T. Fityo, Phys. Lett. A 372, 5872 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. B. Vakili, M.A. Gorji, J. Stat. Mech. P10013 (2012)

  35. E. Castellanos, C. Laemmerzahl, Phys. Lett. B 731, 1 (2014)

    Article  ADS  Google Scholar 

  36. X. Zhang, C. Tian, Chin. Phys. Lett. 32, 010303 (2015)

    Article  ADS  Google Scholar 

  37. H.L. Li, J.X. Ren, W.W. Wang, B. Yang, H.J. Shen, J. Stat. Mech. 2018, 023106 (2018)

    Article  Google Scholar 

  38. S. Dey, V. Hussin, Int. J. Theor. Phys. 58, 3138 (2019)

    Article  Google Scholar 

  39. S. Das, M. Fridman, Phys. Rev. D 104, 026014 (2021)

    Article  ADS  Google Scholar 

  40. M. Novello, M. Visser, G. Volovik (eds.), Artificial Black Holes (World Scientific, 2002)

  41. A. Boudjemâa, Degenerate Bose Gas at Finite Temperatures (Lambert Academic Publishing, Saarbrücken, 2017)

    MATH  Google Scholar 

  42. A. Boudjemâa, M. Benarous, Eur. Phys. J. D 59, 427 (2010)

    Article  ADS  Google Scholar 

  43. A. Boudjemâa, M. Benarous, Phys. Rev. A 84, 043633 (2011)

    Article  ADS  Google Scholar 

  44. A. Boudjemâa, Phys. Rev. A 86, 043608 (2012)

    Article  ADS  Google Scholar 

  45. A. Boudjemâa, Phys. Rev. A 88, 023619 (2013)

    Article  ADS  Google Scholar 

  46. A. Boudjemâa, Phys. Rev. A 90, 013628 (2014)

    Article  ADS  Google Scholar 

  47. A. Boudjemâa, Phys. Rev. A 91, 063633 (2015)

    Article  ADS  Google Scholar 

  48. A. Boudjemâa, Commun. Nonlinear Sci. Numer. Simul. 33, 85 (2016)

    Article  ADS  Google Scholar 

  49. A. Boudjemâa, Commun. Nonlinear Sci. Numer. Simul. 48, 376 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  50. A. Boudjemâa, Phys. Rev. A 94, 053629 (2016)

    Article  ADS  Google Scholar 

  51. A. Boudjemâa, N. Guebli, J. Phys. A: Math. Theor. 50, 425004 (2017)

    Article  ADS  Google Scholar 

  52. A. Boudjemâa, Phys. Rev. A 98, 033612 (2018)

    Article  ADS  Google Scholar 

  53. A. Boudjemâa, Phys. Rev. A 97, 033627 (2018)

    Article  ADS  Google Scholar 

  54. A. Boudjemâa, N. Guebli, Phys. Rev. A 102, 023302 (2020)

    Article  ADS  Google Scholar 

  55. N. Guebli, A. Boudjemâa, Phys. Rev. A 104, 023310 (2021)

    Article  ADS  Google Scholar 

  56. A. Boudjemâa, Sci. Rep. 11, 21765 (2021)

    Article  ADS  Google Scholar 

  57. S.T. Beliaev, Sov. Phys. JETP 7, 289 (1958)

    Google Scholar 

  58. A. Griffin, H. Shi, Phys. Rep. 304, 1 (1998)

    Article  ADS  Google Scholar 

  59. C.J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, 2008)

  60. A. Boudjemâa, J. Phys. B: At. Mol. Opt. Phys. 48, 035302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. J.O. Andersen, Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 76, 599 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. V. Yukalov, Phys. Part. Nucl. 42, 460 (2011)

    Article  Google Scholar 

  63. A. Boudjemâa, J. Phys. A: Math. Theor. 49, 285005 (2016)

    Article  MathSciNet  Google Scholar 

  64. R. Balian, M. Vénéroni, Ann. Phys. (NY) 187, 29 (1988)

    Article  ADS  Google Scholar 

  65. R. Balian, M. Vénéroni, Ann. Phys. (NY) 195, 324 (1989)

    Article  ADS  Google Scholar 

  66. R. Balian, M. Vénéroni, Ann. Phys. (NY) 362, 838 (2015)

    Article  ADS  Google Scholar 

  67. C. Martin, Phys. Rev. D 52, 7121 (1995)

    Article  ADS  Google Scholar 

  68. M. Benarous, H. Flocard, Ann. Phys. 273, 242 (1999)

    Article  ADS  Google Scholar 

  69. F. Scardigli, R. Casadio, Eur. Phys. J. C 75, 425 (2015)

    Article  ADS  Google Scholar 

  70. D. Gao, M. Zhan, Phys. Rev. A 94, 013607 (2016)

    Article  ADS  Google Scholar 

  71. Z.W. Feng, S.Z. Yang b, H.L. Li, X.T. Zu, Phys. Lett. B 768, 81 (2017)

    Article  ADS  Google Scholar 

  72. J.C.S. Neves, Eur. Phys. J. C 80, 343 (2020)

    Article  ADS  Google Scholar 

  73. A. Das, S. Das, N.R. Mansour, E.C. Vagenas, Phys. Lett. B 819, 136429 (2021)

    Article  Google Scholar 

  74. N.N. Bogolubov, J. Phys. (Moscow) 11, 23 (1947)

    MathSciNet  Google Scholar 

  75. A.D. Lange, K. Pilch, A. Prantner, F. Ferlaino, B. Engeser, H.-C. Nägerl, R. Grimm, C. Chin, Phys. Rev. A 79, 013622 (2009)

    Article  ADS  Google Scholar 

  76. P.O. Fedichev, G.V. Shlyapnikov, Phys. Rev. A 58, 3146 (1998)

    Article  ADS  Google Scholar 

  77. T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  78. I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965)

  79. E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2 (Pergamon Press, Oxford, 1980)

  80. R. Lopes, C. Eigen, N. Navon, D. Clément, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 119, 190404 (2017)

    Article  ADS  Google Scholar 

  81. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

  82. L. Menculini, O. Panella, P. Roy, Phys. Rev. D 87, 065017 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelâali Boudjemâa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjemâa, A. Weakly interacting Bose gases with generalized uncertainty principle: Effects of quantum gravity. Eur. Phys. J. Plus 137, 256 (2022). https://doi.org/10.1140/epjp/s13360-022-02475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02475-3

Navigation