Skip to main content
Log in

Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Evaluating the radiation shielding behavior of rocks is significant because the rocks are the pivot materials used for construction purposes. The validation of radiation shielding properties of mafic and ultramafic rocks is inadequate. Here we investigate the Neoarchean mafic and ultramafic complex from the Bhavani Shear Zone in southern India through an integrated approach of lithological mapping using VNIR and SWIR bands of ASTER data along with laboratory-derived reflectance spectral data (0.4 to 2.5 µm). The complex occurs as structurally concordant lenses and sheets within supracrustal gneisses and is composed of a suite of Peridotite, Pyroxenite, and meta-gabbro. We obtained different band combinations, ratioed band composites, PCA, MNF, PPI, MF, and LSU. The bulk chemical data of these rocks analyzed by XRF shows a tholeiitic to a calc-alkaline composition for these rocks. The laboratory spectra were interpreted and resampled to ASTER VNIR and SWIR bands and characterized along with the geochemical data. Among the various band combinations, PCA 428, MNF 321, and band ratios 8/9, 2/1, 5/4 yielded robust results in discriminating the mafic–ultramafic complex. The PPI, MF, and LSU techniques also yielded good results to map the distribution and abundance of the ultramafic rocks. Moreover, using the Monte Carlo simulation, containers with various wall thicknesses, wall materials, and different volumes were suggested, and to dispose of the radioactive wastes with an intermediate level. The dose rate from radioisotopes Cs-137 and Co-60 with a specific activity of 1.058E+9 Bq/L are 30221µSv/h, 51,007 µSv/h, and 12,633 µSv/h without using the containers. The mentioned dose rate decreases to 1.993, 9291, and 11,099 µSv/h when the container walls are made of 20 cm thickness Gabbro formations. The mentioned containers are cheap and effective variants for disposing of the radioisotopes produced from nuclear power stations and nuclear medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: The ASTER data that support the findings of this study are available in “Figshare” with the identifier(s) “https://doi.org/10.6084/m9.figshare.19203395.v1”.]

References

  1. A. Guha, S. Mondal, S. Chatterjee, K.V. Kumar, Geocarto Int. 0, 1 (2020)

  2. S. Arivazhagan, S. Anbazhagan, Geosci. Res. 2 (2017)

  3. F.D. van der Meer, H.M.A. van der Werff, F.J.A. van Ruitenbeek, C.A. Hecker, W.H. Bakker, M.F. Noomen, M. van der Meijde, E.J.M. Carranza, J.B. de Smeth, T. Woldai, Int. J. Appl. Earth Obs. Geoinf. 14, 112 (2012)

    Article  Google Scholar 

  4. D.I. Tishkevich, S.S. Grabchikov, E.A. Grabchikova, D.S. Vasin, S.B. Lastovskiy, A.S. Yakushevich, D.A. Vinnik, T.I. Zubar, I.V. Kalagin, S.V. Mitrofanov, D.V. Yakimchuk, A.V. Trukhanov, I.O.P. Conf, Ser. Mater. Sci. Eng. 848, 012089 (2020)

    Google Scholar 

  5. O. Agar, H.O. Tekin, M.I. Sayyed, M.E. Korkmaz, O. Culfa, C. Ertugay, Results Phys. 12, 237 (2019)

    Article  ADS  Google Scholar 

  6. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kaçal, Nucl. Eng. Technol. 51, 853 (2019)

    Article  Google Scholar 

  7. K.A. Naseer, S. Arunkumar, K. Marimuthu, J. Non. Cryst. Solids 520, 119463 (2019)

  8. K. A. Naseer, P. Karthikeyan, S. Arunkumar, P. Suthanthirakumar, and K. Marimuthu, in AIP Conference Proceedings (2020), p. 030237

  9. K.A. Naseer, K. Marimuthu, Vacuum 183, 109788 (2021)

    Article  ADS  Google Scholar 

  10. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optik (Stuttg). 251, 168436 (2022)

    Article  ADS  Google Scholar 

  11. P. Vani, G. Vinitha, K.A. Naseer, K. Marimuthu, M. Durairaj, T.C. Sabari Girisun, N. Manikandan, J. Mater. Sci. Mater. Electron. 32, 23030 (2021)

  12. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Radiat. Phys. Chem. 188, 109617 (2021)

  13. D.K. Gaikwad, M.I. Sayyed, S.N. Botewad, S.S. Obaid, Z.Y. Khattari, U.P. Gawai, F. Afaneh, M.D. Shirshat, P.P. Pawar, J. Non. Cryst. Solids 503–504, 158 (2019)

    Article  ADS  Google Scholar 

  14. K.A. Naseer, K. Marimuthu, M.S. Al-Buriahi, A. Alalawi, H.O. Tekin, Ceram. Int. 47, 329 (2021)

    Article  Google Scholar 

  15. Q. Chen, K.A. Naseer, K. Marimuthu, P.S. Kumar, B. Miao, K.A. Mahmoud, M.I. Sayyed, J. Aust. Ceram. Soc. 57, 275 (2021)

    Article  Google Scholar 

  16. G. Sathiyapriya, K.A. Naseer, K. Marimuthu, E. Kavaz, A. Alalawi, M.S. Al-Buriahi, J. Mater. Sci. Mater. Electron. 32, 8570 (2021)

    Article  Google Scholar 

  17. P.E. Teresa, K.A. Naseer, T. Piotrowski, K. Marimuthu, D.A. Aloraini, A. H. Almuqrin, M.I. Sayyed, Optik (Stuttg). 247, 168005 (2021)

  18. M.I. Sayyed, B. Albarzan, A.H. Almuqrin, A.M. El-Khatib, A. Kumar, D.I. Tishkevich, A.V. Trukhanov, M. Elsafi, Materials (Basel) 14, 3772 (2021)

    Article  ADS  Google Scholar 

  19. M.I.I. Sayyed, A. Askin, M.H.M.H.M. Zaid, S.F.F. Olukotun, M.U. Khandaker, D.I. Tishkevich, D.A.A. Bradley, Radiat. Phys. Chem. 186, 109556 (2021)

    Article  Google Scholar 

  20. M.I. Sayyed, M.K. Hamad, M.H. Abu Mhareb, K.A. Naseer, K.A. Mahmoud, M.U. Khandaker, H. Osman, B.H. Elesawy, Appl. Sci. 11, 10904 (2021)

  21. K.A. Naseer, K. Marimuthu, K.A. Mahmoud, M.I. Sayyed, Eur. Phys. J. Plus 136, 116 (2021)

    Article  Google Scholar 

  22. P. Evangelin Teresa, K.A. Naseer, K. Marimuthu, H. Alavian, M.I. Sayyed, Radiat. Phys. Chem. 189, 109741 (2021)

  23. R. Divina, K.A. Naseer, K. Marimuthu, Y.S.M. Alajerami, M.S. Al-Buriahi, J. Mater. Sci. Mater. Electron. 31, 21486 (2020)

    Article  Google Scholar 

  24. H.S. Alorfi, M.A. Hussein, S.A. Tijani, Constr. Build. Mater. 251, 118908 (2020)

  25. R.A.R. Bantan, M.I. Sayyed, K.A. Mahmoud, Y. Al-Hadeethi, Prog. Nucl. Energy 126, 103405 (2020)

  26. M. Safari, A. Maghsoudi, A.B. Pour, Geocarto Int. 33, 1186 (2018)

    Article  Google Scholar 

  27. D. Ramakrishnan, R. Bharti, Curr. Sci. 108, 879 (2015)

    Google Scholar 

  28. J. Transon, R. d’Andrimont, A. Maugnard, P. Defourny, Remote Sens. 10, 1 (2018)

    Article  Google Scholar 

  29. C. Pohl, J.L. Van Genderen, Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications (1998)

  30. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F. Abd El-Rehim, K.A. Mahmoud, M. I. Sayyed, M.U. Khandaker, Radiat. Phys. Chem. 189, 109777 (2021)

  31. A.M. Dar, A.R. Mir, K. Anbarasu, M. Satyanarayanan, V. Balaram, D.V.S. Rao, S.N. Charan, J. Geol. Min. Res. 6, 18–27 (2014). https://doi.org/10.5897/JGMR14.0197

    Article  Google Scholar 

  32. T. Irvine, W. Baragar, Can. J. Earth Sci. 8, 523 (1971)

    Article  ADS  Google Scholar 

  33. S. Anbazhagan, S. Arivazhagan, Planet. Space Sci. 57, 1346 (2009)

    Article  ADS  Google Scholar 

  34. Y. Ninomiya, Int. Geosci. Remote Sens. Symp. 3, 1561 (2003)

    Google Scholar 

  35. R.P. Gupta, Remote Sensing Geology (Springer, Berlin Heidelberg, Berlin, Heidelberg, Heidelberg, 2003)

    Book  Google Scholar 

  36. S. Arivazhagan, S. Anbazhagan, Curr. Sci. 100, 761 (2011)

    Google Scholar 

  37. E.A. Cloutis, J. Geophys. Res. 107, 5039 (2002)

    Article  Google Scholar 

  38. E. Cloutis, M. Gaffey, J. Geophys. Res. 96, 22809 (1991)

    Article  ADS  Google Scholar 

  39. G.R. Hunt, Geophysics 42, 501 (1977)

    Article  ADS  Google Scholar 

  40. M.H. Tangestani, L. Jaffari, R.K. Vincent, B.B.M. Sridhar, Remote Sens. Environ. 115, 2243 (2011)

    Article  ADS  Google Scholar 

  41. L.C. Rowan, J.C. Mars, Remote Sens. Environ. 84, 350 (2003)

    Article  ADS  Google Scholar 

  42. L.C. Rowan, J.C. Mars, C.J. Simpson, Remote Sens. Environ. 99, 105 (2005)

    Article  ADS  Google Scholar 

  43. A.A. Othman, R. Gloaguen, Remote Sens. 6, 6867 (2014)

    Article  ADS  Google Scholar 

  44. A.B. Pour, M. Hashim, Y. Park, J.K. Hong, Geocarto Int. 33, 1281 (2018)

    Article  Google Scholar 

  45. N. Horning, Am. Museum Nat. Hist. Cent. Biodivers. Conserv. 14 (2004)

  46. A. Rezaei, H. Hassani, P. Moarefvand, A. Golmohammadi, Geol. Ecol. Landscapes 4, 59 (2020)

    Article  Google Scholar 

  47. W.S. Ibrahim, K. Watanabe, K. Yonezu, Ore Geol. Rev. 79, 62 (2016)

    Article  Google Scholar 

  48. M. Sekandari, I. Masoumi, A. Beiranvand Pour, A. M Muslim, O. Rahmani, M. Hashim, B. Zoheir, B. Pradhan, A. Misra, S.M. Aminpour, Remote Sens. 12, 1239 (2020)

  49. A.B. Pour, M. Hashim, J.K. Hong, Y. Park, Ore Geol. Rev. 108, 112 (2019)

    Article  Google Scholar 

  50. M.H. Wakila, A. Saepuloh, M.N. Heriawan, A. Susanto, IOP Conf. Ser. Earth Environ. Sci. 42 (2016)

  51. A.B. Pour, M. Hashim, Ore Geol. Rev. 44, 1 (2012)

    Article  Google Scholar 

  52. Z. Ourhzif, A. Algouti, A. Algouti, F. Hadach, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 42, 1255 (2019)

  53. F.A. Kruse, Summ. 12th Annu. Jet Propuls. Lab. Airborne Geosci. Work. Pasadena, California, Pasadena, JPL Publ. 149 (2003)

  54. J.W. Boardman, F.A. Kruse, R.O. Green, Summ. JPL Airborne Earth Sci. Work. 3 (1995)

  55. M.H. Zadeh, M.H. Tangestani, Int. J. Remote Sens. 34, 8393 (2013)

    Article  Google Scholar 

  56. S. Anbazhagan, N.K. Sainaba, S. Arivazhagan, J. Indian Soc. Remote Sens. 40, 145 (2012)

    Article  Google Scholar 

  57. L. Liu, J. Zhou, D. Jiang, D. Zhuang, L.R. Mansaray, J. Earth Sci. 25, 529 (2014)

    Article  Google Scholar 

  58. D.E. Sabol, J.B. Adams, M.O. Smith, J. Geophys. Res. 97, 2659 (1992). https://doi.org/10.1029/91JE03117

    Article  ADS  Google Scholar 

  59. M. Hosseinjani, M.H. Tangestani, Int. J. Digit. Earth 4, 487 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the deanship of scientific research at King Khalid University (Grant code: R.G.P.2/79/41), Kingdom of Saudi Arabia. The authors acknowledge the Science and Engineering Research Board, Department of Science and Technology, New Delhi, for the financial support under the Fast Track Project- SR/FTP/ES/2014. The researcher K A Mahmoud is funded by a scholarship under the Joint Executive Program between the Arab Republic of Egypt and the Russian Federation.

Funding

King Khalid University, R.G.P. 2/79/41, Mohammed S. Alqahtani.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Naseer or S. Arivazhagan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Libeesh, N.K., Naseer, K.A., Arivazhagan, S. et al. Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes. Eur. Phys. J. Plus 137, 267 (2022). https://doi.org/10.1140/epjp/s13360-022-02473-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02473-5

Navigation