Skip to main content

Advertisement

Log in

Improve harvesting efficiency of tri-stable energy harvester by tailoring potential energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In vibration energy harvesting, it has been proved that the tri-stable energy harvester (TEH) could give a large output through snap-through motion. But unfortunately, if it is under a weak excitation, the snap-through motion hardly occurs, due to the relatively high potential barrier. To overcome this defect, we introduce an additional magnet to TEH to tailor the potential energy, and then developed an improved tri-stable energy harvester (ITEH), which can realize snap-through motion easily. The electromechanical equations are derived, and the potential energy is given. The analysis shows that the additional magnet could elevate the bottom of potential well and lower the barrier between them, thereby making the snap-through motion happen more easily. Compared to TEH, the ITEH could begin snap-through motion from the weak excitation and generate a larger output voltage. The prototype of ITEH was fabricated, and the validation experiments were carried out. The experimental results are consistent with the theoretical predictions and prove the advantage of ITEH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for microsystems applications. Meas. Sci. Technol. 17(12), R175–R195 (2006)

    Article  Google Scholar 

  2. S. Roundy, P.K. Wright, J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Comput. Commun. 26(11), 1131–1144 (2003)

    Article  Google Scholar 

  3. S.R. Anton, H.A. Sodano, A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater. Struct. 16(3), R1–R21 (2007)

    Article  ADS  Google Scholar 

  4. S.W. Ibrahim, W.G. Ali, A review on frequency tuning methods for piezoelectric energy harvesting systems. J. Renew. Sustain. Energy 4(6), 062703 (2012)

    Article  Google Scholar 

  5. R.L. Harne, K.W. Wang, A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22(2), 023001 (2013)

    Article  ADS  Google Scholar 

  6. S.C. Stanton, C.C. McGehee, B.P. Mann, Nonlinear dynamics for broadband energy harvesting: investigation of a bistable piezoelectric inertial generator. Physica D 239(10), 640–653 (2010)

    Article  ADS  Google Scholar 

  7. W.Q. Liu, A. Badel, F. Formosa, Y.P. Wu, A. Agbossou, Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting. Smart Mater. Struct. 22(3), 035013 (2013)

    Article  ADS  Google Scholar 

  8. L. Tang, Y. Yang, C.K. Soh, Broadband Vibration Energy Harvesting Techniques (Springer, New York, NY, 2013), pp. 17–26

    Google Scholar 

  9. S. Leadenham, A. Erturk, M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: harmonic balance analysis and experimental validation. J. Sound Vibr. 333(23), 6209–6223 (2014)

    Article  ADS  Google Scholar 

  10. A.S. De Paula, D.J. Inman, M.A. Savi, Energy harvesting in a nonlinear piezomagnetoelastic beam subjected to random excitation. Mech. Syst. Signal Proc. 54–55, 405–416 (2015)

    Article  Google Scholar 

  11. K. Tao, L.H. Tang, J. Wu, S.W. Lye, H.L. Chang, J.M. Miao, Investigation of multimodal electret-based MEMS energy harvester with impact-induced nonlinearity. J. Microelectromech. Syst. 27(2), 276–288 (2018)

    Article  Google Scholar 

  12. M.I. Friswell, S.F. Ali, O. Bilgen, S. Adhikari, A. Lees, G. Litak, Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass. J. Intell. Mater. Syst. Struct. 23(13), 1505–1521 (2012)

    Article  Google Scholar 

  13. F. Cottone, H. Vocca, L. Gammaitoni, Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)

    Article  ADS  Google Scholar 

  14. M. Ferrari, V. Ferrari, M. Guizzetti, B. Ando, S. Baglio, C. Trigona, Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens. Actuator A-Phys. 162(2), 425–431 (2010)

    Article  Google Scholar 

  15. K. Fan, C. Xu, W. Wang, Y. Fang, Broadband energy harvesting via magnetic coupling between two movable magnets. Chin. Phys. B 23(8), 374–381 (2014)

    Google Scholar 

  16. P. Zhu, X. Ren, W. Qin, Z. Zhou, Improving energy harvesting in a tri-stable piezomagnetoelastic beam with two attractive external magnets subjected to random excitation. Arch. Appl. Mech. 87(1), 45–57 (2016)

    Article  Google Scholar 

  17. P. Zhu, X.M. Ren, W.Y. Qin, Y.F. Yang, Z.Y. Zhou, Theoretical and experimental studies on the characteristics of a tri-stable piezoelectric harvester. Arch. Appl. Mech. 87(9), 1541–1554 (2017)

    Article  ADS  Google Scholar 

  18. Y.G. Leng, D. Tan, J.J. Liu, Y.Y. Zhang, S.B. Fan, Magnetic force analysis and performance of a tri-stable piezoelectric energy harvester under random excitation. J. Sound Vibr. 406, 146–160 (2017)

    Article  ADS  Google Scholar 

  19. S.X. Zhou, J.Y. Cao, D.J. Inman, J. Lin, D. Li, Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vibr. 373, 223–235 (2016)

    Article  ADS  Google Scholar 

  20. S.X. Zhou, J.Y. Cao, D.J. Inman, J. Lin, S.S. Liu, Z.Z. Wang, Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  21. S.X. Zhou, J.Y. Cao, J. Lin, Z.Z. Wang, Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting. Eur. Phys. J.-Appl. Phys 67(3), 30902 (2014)

    Article  ADS  Google Scholar 

  22. B. Andò, S. Baglio, C. Trigona, N. Dumas, L. Latorre, P. Nouet, Nonlinear mechanism in MEMS devices for energy harvesting applications. J. Micromech. Microeng. 20(12), 125020 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiyang Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Qin, W., Pan, J. et al. Improve harvesting efficiency of tri-stable energy harvester by tailoring potential energy. Eur. Phys. J. Plus 137, 268 (2022). https://doi.org/10.1140/epjp/s13360-022-02471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02471-7

Navigation