Skip to main content
Log in

Strong gravitational lensing around Kehagias–Sfetsos compact objects surrounded by plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present the analysis how Hořava gravity and plasma influence the strong lensing phenomena around Kehagias–Sfetsos (KS) black holes. Using the semi-analytical Bozza method of strong lensing limit, we determine the multiple images, namely their separation S, and magnification R. We apply our calculations to the case of supermassive black hole having mass \(M=6.5\times 10^{9}\text {M}_\odot \) and being at distance \(d_0=16.8\text {Mpc}\) from observer corresponding to those observed in M87. We show that the sensitivity of image magnification, image separation, and shadow angular size on KS parameter \(\omega \) and plasma parameter k are of order from 1 to \(10\%\) for R and \(~\,16\%\) for S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al., First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019)

  2. Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al., First M87 event horizon telescope results. II. Array and instrumentation. Astrophys. J. Lett. 875, L2 (2019)

  3. Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al., First M87 event horizon telescope results. III. Data processing and calibration. Astrophys. J. Lett. 875, L3 (2019)

  4. Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al., First M87 event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875, L4 (2019)

  5. Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al., First M87 event horizon telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 875, L5 (2019)

  6. Event Horizon Telescope Collaboration, K. Akiyama, A. Alberdi, W. Alef, K. Asada, R. Azulay, A.-K. Baczko, D. Ball, M. Baloković, J. Barrett et al., First M87 event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6 (2019)

  7. Z. Stuchlík, M. Kološ, J. Kovář, P. Slaný, A. Tursunov, Influence of cosmic repulsion and magnetic fields on accretion disks rotating around Kerr black holes. Universe 6(2), 26 (2020)

    Article  ADS  Google Scholar 

  8. C.T. Cunningham, J.M. Bardeen, The optical appearance of a star orbiting an extreme Kerr black hole. Astrophys. J. 173, L137 (1972)

    Article  ADS  Google Scholar 

  9. J. Schee, Z. Stuchlík, Optical phenomena in the field of Braneworld Kerr black holes. Int. J. Mod. Phys. D 18(6), 983–1024 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Bambi, K. Freese, S. Vagnozzi, L. Visinelli, Testing the rotational nature of the supermassive object M87* from the circularity and size of its first image. Phys. Rev. D 100(4), 044057 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Wielgus et al., Monitoring the morphology of M87* in 2009–2017 with the event horizon telescope. Astrophys. J. 901(1), 67 (2020)

    Article  ADS  Google Scholar 

  12. A. Övgün, İ Sakallı, J. Saavedra, Shadow cast and deflection angle of Kerr–Newman–Kasuya spacetime. JCAP 10, 041 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Övgün, Weak field deflection angle by regular black holes with cosmic strings using the Gauss–Bonnet theorem. Phys. Rev. D 99(10), 104075 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Z. Li, A. Övgün, Finite-distance gravitational deflection of massive particles by a Kerr-like black hole in the bumblebee gravity model. Phys. Rev. D 101(2), 024040 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. İ Çimdiker, D. Demir, A. Övgün, Black hole shadow in symmergent gravity. Phys. Dark Univ. 34, 100900 (2021)

    Article  Google Scholar 

  16. W. Javed, A. Hamza, A. Övgün, Weak deflection angle and shadow by tidal charged black hole. Universe 7(10), 385 (2021)

    Article  ADS  Google Scholar 

  17. W. Javed, M. Aqib, A . Övgün, Effect of the magnetic charge on weak deflection angle and greybody bound of the black hole in Einstein–Gauss–Bonnet gravity (2021)

  18. K. Jusufi, A. Övgün, Gravitational lensing by rotating wormholes. Phys. Rev. D 97(2), 024042 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Övgün, Light deflection by Damour–Solodukhin wormholes and Gauss–Bonnet theorem. Phys. Rev. D 98(4), 044033 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Okyay, A. Övgün, Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors. JCAP 01(01), 009 (2022)

    Article  ADS  Google Scholar 

  21. W. Javed, I. Hussain, A. Övgün, Bounding greybody and weak deflection angle of NED black holes with many horizons (2021)

  22. K.S. Virbhadra, G.F.R. Ellis, Schwarzschild black hole lensing. Phys. Rev. D 62, 084003 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. K.S. Virbhadra, Relativistic images of Schwarzschild black hole lensing. Phys. Rev. D 79, 083004 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  24. K.S. Virbhadra, G.F.R. Ellis, Gravitational lensing by naked singularities. Phys. Rev. D 65, 103004 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Z. Stuchlík, J. Schee, Appearance of Keplerian discs orbiting Kerr superspinars. Class. Quantum Grav. 27(21), 215017 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  26. K.S. Virbhadra, D. Narasimha, S.M. Chitre, Role of the scalar field in gravitational lensing. Astron. Astrophys. 337, 1–8 (1998)

    ADS  Google Scholar 

  27. C.-M. Claudel, K.S. Virbhadra, G.F.R. Ellis, The geometry of photon surfaces. J. Math. Phys. 42, 818–838 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  28. K.S. Virbhadra, C.R. Keeton, Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities. Phys. Rev. D 77, 124014 (2008)

    Article  ADS  Google Scholar 

  29. V. Bozza, S. Capozziello, G. Iovane, G. Scarpetta, Strong field limit of black hole gravitational lensing. Gen. Relat. Gravit. 33, 1535–1548 (2001)

    Article  ADS  Google Scholar 

  30. V. Bozza, Gravitational lensing in the strong field limit. Phys. Rev. D 66(10), 103001 (2002)

    Article  ADS  Google Scholar 

  31. A. Kehagias, K. Sfetsos, The black hole and FRW geometries of non-relativistic gravity. Phys. Lett. B 678, 123–126 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. P. Hořava, Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett. 102(16), 161301 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. P. Hořava, C.M. Melby-Thompson, General covariance in quantum gravity at a Lifshitz point. Phys. Rev. D 82(6), 064027 (2010)

    Article  ADS  Google Scholar 

  34. S. Hensh, A. Abdujabbarov, J. Schee, Z. Stuchlík, Gravitational lensing around Kehagias–Sfetsos compact objects surrounded by plasma. Eur. Phys. J. C 79(6), 533 (2019)

    Article  Google Scholar 

  35. Z. Stuchlík, D. Pugliese, J. Schee, H. Kučáková, Perfect fluid tori orbiting Kehagias–Sfetsos naked singularities. Eur. Phys. J. C 75(9), 451 (2015)

    Article  ADS  Google Scholar 

  36. Z. Stuchlík, J. Schee, A. Abdujabbarov, Ultra-high-energy collisions of particles in the field of near-extreme Kehagias–Sfetsos naked singularities and their appearance to distant observers. Phys. Rev. D 89(10), 104048 (2014)

    Article  ADS  Google Scholar 

  37. Z. Stuchlík, J. Schee, Optical effects related to Keplerian discs orbiting Kehagias–Sfetsos naked singularities. Class. Quantum Grav. 31(19), 195013 (2014)

    Article  ADS  Google Scholar 

  38. R.S. S. Vieira, J. Schee, W. Kluźniak, Z. ěk Stuchlík, M. Abramowicz, Circular geodesics of naked singularities in the Kehagias–Sfetsos metric of Hořava’s gravity. Phys. Rev. D 90(2), 024035 (2014)

  39. J.L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960)

    MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the institutional support of Silesian University in Opava and Grant No. SGS/12/2019. A. A. is supported by PIFI fund of Chinese Academy of Sciences. J.S. and Z.S. acknowledge the support of the Grant 19-03950S of Czech Science Foundation (GAC̈R). AA thanks the Grant of Ministry for Innovative Development of Uzbekistan F-FA-2021-510.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hensh, S., Schee, J., Abdujabbarov, A. et al. Strong gravitational lensing around Kehagias–Sfetsos compact objects surrounded by plasma. Eur. Phys. J. Plus 137, 242 (2022). https://doi.org/10.1140/epjp/s13360-022-02454-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02454-8

Navigation