Skip to main content

Advertisement

Log in

A study of some aspects of the nuclear structure in the even–even Yb isotopes

The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The medium-to-heavy mass ytterbium isotopes (\(^{70}\hbox {Yb}\)) in the rare-earth mass region are known to be well-deformed nuclei, which can be populated to very high spins. Spectroscopic information becomes scarcer as the neutron number increases, impeding the understanding of nuclear structure in this mass region, where interesting phenomena, such as shape coexistence, have been predicted. In this work we attempt a holistic approach to investigate existing experimental data in \(^{164-178}\hbox {Yb}\) by means of data systematics and new theoretical calculations with well-established models. In this line of study, energy levels, deformation parameters \(\beta _2\), reduced transition probabilities B(E2) and transition quadrupole moments Q are calculated by employing: the Phenomenological Model, the Interacting Boson Model (IBM-1), the Finite-Range Droplet Model, the Hartree–Fock–BCS Model with MSk7 force, the Hartree–Fock–Bogoliubov Model with Gogny D1S force, the Hartree–Fock–Bogoliubov Model with UNEDF1, the Relativistic Hartree–Bogoliubov Model with the covariant energy density functional NL3\(^*\), the Proxy SU(3) and the Pseudo SU(3) models. In addition, numerical results for energy ratios for the Yb isotopes with the Exactly Separable Davidson (ESD), Exactly Separable Morse, Exactly Separable Woods Saxon, Deformation Dependent Mass Davidson (DDMD) and Deformation-Dependent Mass Kratzer (DDMK) analytical solutions of the Bohr Hamiltonian have been obtained. All results are compared to data and used further as benchmarks to provide guidance for experimental nuclear structure studies in the neutron-rich side of the nuclear chart around \(A=180\). An overall good agreement was found between available adopted data and theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment:Bibliographic data in this work have been retrieved from National Nuclear Data Center (NNDC) at http://www.nndc.bnl.gov/.].

References

  1. A. Bohr, B.R. Mottelson, Nuclear Structure: Nuclear Deformations, vol. 2 (Benjamin, New York, 1975)

    MATH  Google Scholar 

  2. NNDC. National Nuclear Data Center, http://www.nndc.bnl.gov/

  3. H. Ganev, V.P. Garistov, A.I. Georgieva, Description of the ground and octupole bands in the symplectic extension of the interacting vector boson model. Phys. Rev. C 69, 014305 (2004)

    Article  ADS  Google Scholar 

  4. M. Kimura, Y. Taniguchi, Y. Kanada-En’yo, H. Horiuchi, K. Ikeda, Prolate, oblate, and triaxial shape coexistence, and the lost magicity of \(N=28\) in \({}^{43}\)S. Phys. Rev. C 87, 011301 (2013)

    Article  ADS  Google Scholar 

  5. R. Lucas, Nuclear shapes. Europhys. News 32(1), 5–8 (2001)

    Article  ADS  Google Scholar 

  6. W. McLatchie, J.E. Kitching, W. Darcey, The reaction \(^{154}\)Sm (p, t) \(^{152}\)Sm and further evidence for shape coexistence in \(^{152}\)Sm. Phys. Lett. B 30(8), 529–530 (1969)

    Article  ADS  Google Scholar 

  7. K. Heyde, J.L. Wood, Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467–1521 (2011)

    Article  ADS  Google Scholar 

  8. A. Martinou, D. Bonatsos, T.J. Mertzimekis, K.E. Karakatsanis, I.E. Assimakis, S.K. Peroulis, S. Sarantopoulou, N. Minkov, The islands of shape coexistence within the Elliott and the proxy-SU(3) Models. Eur. Phys. J. A 57(3), 84 (2021)

    Article  ADS  Google Scholar 

  9. H.-F. Li, W. Hua-Lei, M.-L. Liu, Nuclear collectivity in the even-even \(^{164-178}\)Yb along the yrast line. Nucl. Sci. Tech. 30, 01 (2019)

    Article  ADS  Google Scholar 

  10. F. Asaro, F. Stephens, I. Perlman, Complex alpha spectra of radiothorium (\({{\rm Th}}^{228}\)) and Thorium-X (\({{\rm Ra}}^{224}\)). Phys. Rev. 92, 1495–1500 (1953)

    Article  ADS  Google Scholar 

  11. P.A. Butler, W. Nazarewicz, Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys. 68, 349–421 (1996)

    Article  ADS  Google Scholar 

  12. L.P. Gaffney, P.A. Butler, M. Scheck, A.B. Hayes, F. Wenander, M. Albers, B. Bastin, C. Bauer, A. Blazhev, S. Bönig, N. Bree, J. Cederkäll, T. Chupp, D. Cline, T.E. Cocolios, T. Davinson, H. De Witte, J. Diriken, T. Grahn, A. Herzan, M. Huyse, D.G. Jenkins, D.T. Joss, N. Kesteloot, J. Konki, M. Kowalczyk, T. Kröll, E. Kwan, R. Lutter, K. Moschner, P. Napiorkowski, J. Pakarinen, M. Pfeiffer, D. Radeck, P. Reiter, K. Reynders, S.V. Rigby, L.M. Robledo, M. Rudigier, S. Sambi, M. Seidlitz, B. Siebeck, T. Stora, P. Thoele, P. Van Duppen, M.J. Vermeulen, M. von Schmid, D. Voulot, N. Warr, K. Wimmer, K. Wrzosek-Lipska, C.Y. Wu, M. Zielinska, Studies of pear-shaped nuclei using accelerated radioactive beams. Nature 497(7448), 199–204 (2013)

    Article  ADS  Google Scholar 

  13. P. A. Butler, L. P. Gaffney, P. Spagnoletti, J. Konki, M. Scheck, J. F. Smith, K. Abrahams, M. Bowry, J. Cederkäll, T. Chupp, G. de Angelis, H. De Witte, P. E. Garrett, A. Goldkuhle, C. Henrich, A. Illana, K. Johnston, D. T. Joss, J. M. Keatings, N. A. Kelly, M. Komorowska, T. Kröll, M. Lozano, B. S. Nara Singh, D. O’Donnell, J. Ojala, R. D. Page, L. G. Pedersen, C. Raison, P. Reiter, J. A. Rodriguez, D. Rosiak, S. Rothe, T. M. Shneidman, B. Siebeck, M. Seidlitz, J. Sinclair, M. Stryjczyk, P. Van Duppen, S. Vinals, V. Virtanen, N. Warr, K. Wrzosek-Lipska, and M. Zielinska. The observation of vibrating pear–shapes in radon nuclei. Nature Communications, 10(1), 2473 (2019)

  14. W.R. Phillips, I. Ahmad, H. Emling, R. Holzmann, R.V.F. Janssens, T.-L. Khoo, M.W. Drigert, Octupole deformation in neutron=-rich barium isotopes. Phys. Rev. Lett. 57, 3257–3260 (1986)

    Article  ADS  Google Scholar 

  15. B. Bucher, S. Zhu, C.Y. Wu, R.V.F. Janssens, R.N. Bernard, L.M. Robledo, T.R. Rodríguez, D. Cline, A.B. Hayes, A.D. Ayangeakaa, M.Q. Buckner, C.M. Campbell, M.P. Carpenter, J.A. Clark, H.L. Crawford, H.M. David, C. Dickerson, J. Harker, C.R. Hoffman, B.P. Kay, F.G. Kondev, T. Lauritsen, A.O. Macchiavelli, R.C. Pardo, G. Savard, D. Seweryniak, R. Vondrasek, Direct evidence for octupole deformation in \(^{146}{{\rm Ba}}\) and the origin of large \(E1\) moment variations in reflection-asymmetric nuclei. Phys. Rev. Lett. 118, 152504 (2017)

    Article  ADS  Google Scholar 

  16. A. Khaliel, T.J. Mertzimekis, F.C.L. Crespi, G. Zagoraios, D. Papaioannou, N. Florea, A. Turturica, L. Stan, N. Mărginean, Experimental study of the 2n-transfer reaction \(^{138}\)Ba(\(^{18}\)O,\(^{16}\)O)\(^{140}\)Ba in the projectile energy range 61–67 MeV. EPL (Europhys. Lett.) 128(6), 62001 (2020)

    Article  Google Scholar 

  17. H.S. El-Gendy, Nuclear structure of even-even Ytterbium isotopes \(^{166-176}\)Yb. Nucl. Phys. A 1001, 121883 (2020)

    Article  Google Scholar 

  18. S. Wahlborn, Effects of blocking on the level spacings of odd-mass deformed nuclei. Nucl. Phys. 37, 554–584 (1962)

    Article  Google Scholar 

  19. W. Ogle, S. Wahlborn, R. Piepenbring, S. Fredriksson, Single-particle levels of nonspherical nuclei in the region \(150 < A < 190\). Rev. Mod. Phys. 43, 424–478 (1971)

    Article  ADS  Google Scholar 

  20. G. Ehrling, S. Wahlborn, Single-particle model calculations for deformed nuclei of spheroidal and non-spheroidal shapes. Phys. Scr. 6(2–3), 94–108 (1972)

    Article  ADS  Google Scholar 

  21. W. Satuła, R. Wyss, P. Magierski, The Lipkin-Nogami formalism for the cranked mean field. Nucl. Phys. A 578(1), 45–61 (1994)

    Article  ADS  Google Scholar 

  22. F.R. Xu, W. Satuła, R. Wyss, Quadrupole pairing interaction and signature inversion. Nucl. Phys. A 669(1), 119–134 (2000)

    Article  ADS  Google Scholar 

  23. Z.-H. Zhang, X.-T. He, J.-Y. Zeng, E.-G. Zhao, S.-G. Zhou, Systematic investigation of the rotational bands in nuclei with \(Z\approx 100\) using a particle-number conserving method based on a cranked shell model. Phys. Rev. C 85, 014324 (2012)

    Article  ADS  Google Scholar 

  24. K. Hara, Y. Sun, Projected shell model and high-spin spectroscopy. Int. J. Modern Phys. E 04(04), 637–785 (1995)

    Article  ADS  Google Scholar 

  25. Z. Shi, Z.H. Zhang, Q.B. Chen, S.Q. Zhang, J. Meng, Shell-model-like approach based on cranking covariant density functional theory: Band crossing and shape evolution in \(^{60}{{\rm Fe}}\). Phys. Rev. C 97, 034317 (2018)

    Article  ADS  Google Scholar 

  26. F. Iachello, Dynamic symmetries at the critical point. Phys. Rev. Lett. 85, 3580–3583 (2000)

    Article  ADS  Google Scholar 

  27. F. Iachello, Analytic description of critical point nuclei in a spherical-axially deformed shape phase transition. Phys. Rev. Lett. 87, 052502 (2001)

    Article  ADS  Google Scholar 

  28. F. Iachello, Phase transitions in angle variables. Phys. Rev. Lett. 91, 132502 (2003)

    Article  ADS  Google Scholar 

  29. D. Bonatsos, D. Lenis, D. Petrellis, P.A. Terziev, Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition. Phys. Lett. B 588(3), 172–179 (2004)

    Article  ADS  Google Scholar 

  30. P.H. Stelson, L. Grodzins, Nuclear transition probability, \(B(E2)\), for \(0_{g.s.}^{+} -- 2_{first}^{+}\) transitions and deformation parameter, \(\beta _2\). Nucl. Data Sheets. Sect. A 1, 21–102 (1965)

    Article  ADS  Google Scholar 

  31. S. Raman, C.H. Malarkey, W.T. Milner, C.W. Nestor, P.H. Stelson, Transition probability, \(B(E2)\uparrow \), from the ground to the first-excited \(2^+\) state of even-even nuclides. At. Data Nucl. Data Tables 36(1), 1–96 (1987)

    Article  ADS  Google Scholar 

  32. S. Raman, C.W. Nestor, P. Tikkanen, Transition probability from the ground to the first-excited \(2^+\) state of even-even nuclides. At. Data Nucl. Data Tables 78(1), 1–128 (2001)

    Article  ADS  Google Scholar 

  33. Reduced Transition Probabilities or \(B(E2;0^+\rightarrow 1^+)\) Values, https://www.nndc.bnl.gov/be2/

  34. B. Pritychenko, M. Birch, B. Singh, and M. Horoi. Tables of E2 Transition Probabilities from the first \(2^+\) States in Even–Even Nuclei. Atom. Data Nucl. Data Tabl. 107, 1–139 (2016). [Erratum: Atom. Data Nucl. Data Tabl. 114, 371–374 (2017)]

  35. H.N. Hady, M.K. Muttal, Investigation of mixed symmetry states in \(^{170-178}\)Yb isotopes. J. Phys: Conf. Ser. 1591, 012016 012016 (2020)

    Google Scholar 

  36. M.A. Al-Jubbori, H.H. Kassim, F.I. Sharrad, I. Hossain, Deformation properties of the even–even rare–earth Er–Os isotopes for N = 100. Int. J. Modern Phys. E 27(05), 1850035 (2018)

    Article  ADS  Google Scholar 

  37. F. Sharrad, H. Abdullah, N. Al-dahan, A. Mohammed-Ali, A. Okhunov, H. Abu Kassim, Shape transition and collective excitations in neutron–rich \(^{170-178}\)Yb nuclei. Rom. J. Phys. 57, 1346–1355 (2012)

    Google Scholar 

  38. A. Okhunov, F. Sharrad, A. Al-Sammarraie, M. Khandaker, Correspondence between phenomenological and IBM-1 models of even isotopes of Yb. Chin. Phys. C 39, 084101 (2015)

    Article  ADS  Google Scholar 

  39. E.A. McCutchan, N.V. Zamfir, R.F. Casten, Mapping the interacting boson approximation symmetry triangle: New trajectories of structural evolution of rare-earth nuclei. Phys. Rev. C 69, 064306 (2004)

    Article  ADS  Google Scholar 

  40. A. Zyriliou, Experimental investigations of nuclear structure in mid–heavy nuclei. Ph.D Thesis, National and Kapodistrian University of Athens, in progress

  41. P. Vasileiou, Measurements of lifetimes in the neutron–rich \(^{180}\)Hf nucleus. Ph.D Yhesis, National and Kapodistrian University of Athens, in progress

  42. B. Singh, J. Chen, Nuclear data sheets for A = 164. Nucl. Data Sheets 147, 1–381 (2018)

    Article  ADS  Google Scholar 

  43. C.M. Baglin, Nuclear data sheets for A = 166. Nucl. Data Sheets 109(5), 1103–1382 (2008)

    Article  ADS  Google Scholar 

  44. C.M. Baglin, Nuclear data sheets for A = 168. Nucl. Data Sheets 111(7), 1807–2080 (2010)

    Article  ADS  Google Scholar 

  45. C.M. Baglin, E.A. McCutchan, S. Basunia, E. Browne, Nuclear data sheets for A = 170. Nucl. Data Sheets 153, 1–494 (2018)

    Article  ADS  Google Scholar 

  46. B. Singh, Nuclear data sheets for A = 172. Nucl. Data Sheets 75(2), 199–376 (1995)

    Article  ADS  Google Scholar 

  47. E. Browne, H. Junde, Nuclear data sheets for A = 174. Nucl. Data Sheets 87(1), 15–176 (1999)

    Article  ADS  Google Scholar 

  48. M.S. Basunia, Nuclear data sheets for A = 176. Nucl. Data Sheets 107(4), 791–1026 (2006)

    Article  ADS  Google Scholar 

  49. E. Achterberg, O.A. Capurro, G.V. Marti, Nuclear data sheets for A = 178. Nucl. Data Sheets 110(7), 1473–1688 (2009)

    Article  ADS  Google Scholar 

  50. E.A. McCutchan, Nuclear data sheets for A = 180. Nucl. Data Sheets 126, 151–372 (2015)

    Article  ADS  Google Scholar 

  51. K.S. Krane, Introductory Nuclear Physics (Wiley, New York, NY, 1988)

    Google Scholar 

  52. Y.Y. Sharon, N. Benczer-Koller, G.J. Kumbartzki, L. Zamick, R.F. Casten, Systematics of the ratio of electric quadrupole moments \(Q(2_1^+)\) to the square root of the reduced transition probabilities \(B(E2;0_1^+\rightarrow 2_1^+)\) in even-even nuclei. Nucl. Phys. A 980, 131–142 (2018)

    Article  ADS  Google Scholar 

  53. W. Greiner, J.A. Maruhn, Nuclear models (Springer, Berlin, Heidelberg, Berlin, 1996)

    Book  MATH  Google Scholar 

  54. A.A. Okhunov, G.I. Turaeva, H.A. Kassim, M.U. Khandaker, N.B. Rosli, Analysis of the energy spectra of ground states of deformed nuclei in the rare-earth region. Chin. Phys. C 39(4), 044101 (2015)

    Article  ADS  Google Scholar 

  55. S.M. Harris, Higher order corrections to the cranking model. Phys. Rev. 138, B509–B513 (1965)

    Article  ADS  Google Scholar 

  56. P.N. Usmanov, I.N. Mikhailov, Effects of nonadiabaticity of collective motion in even-even deformed nuclei. Phys. Part. Nucl. 28(4), 348–373 (1997)

    Article  Google Scholar 

  57. R.F. Casten, Nuclear Structure from a Simple Perspective (Oxford science publications. Oxford University Press, 2000)

  58. P. Möller, J.R. Nix, Nuclear masses from a unified macroscopic-microscopic model. At. Data Nucl. Data Tables 39(2), 213–223 (1988)

    Article  ADS  Google Scholar 

  59. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59(2), 185–381 (1995)

    Article  ADS  Google Scholar 

  60. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 109–110, 1–204 (2016)

    Article  ADS  Google Scholar 

  61. W.D. Myers, W.J. Swiatecki, Average nuclear properties. Ann. Phys. 55(3), 395–505 (1969)

    Article  ADS  Google Scholar 

  62. V.M. Strutinsky, Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95(2), 420–442 (1967)

    Article  ADS  Google Scholar 

  63. H.J. Lipkin, Collective motion in many-particle systems: Part 1. The violation of conservation laws. Ann. Phys. 9(2), 272–291 (1960)

    Article  ADS  MATH  Google Scholar 

  64. Y. Nogami, Improved superconductivity approximation for the pairing interaction in nuclei. Phys. Rev. 134, B313–B321 (1964)

    Article  ADS  Google Scholar 

  65. F. Tondeur, S. Goriely, J.M. Pearson, M. Onsi, Towards a Hartree-Fock mass formula. Phys. Rev. C 62, 024308 (2000)

    Article  ADS  Google Scholar 

  66. S. Goriely, F. Tondeur, J.M. Pearson, A Hartee-Fock nuclear mass table. At. Data Nucl. Data Tables 77(2), 311–381 (2001)

    Article  ADS  Google Scholar 

  67. J.F. Berger, M. Girod, D. Gogny, Time-dependent quantum collective dynamics applied to nuclear fission. Comput. Phys. Commun. 63(1), 365–374 (1991)

    Article  ADS  MATH  Google Scholar 

  68. S. Hilaire, M. Girod, Large-scale mean-field calculations from proton to neutron drip lines using the D1S Gogny force. Eur. Phys. J. A 33(2), 237–241 (2007)

    Article  ADS  Google Scholar 

  69. J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S. Péru, N. Pillet, G.F. Bertsch, Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81, 014303 (2010)

    Article  ADS  Google Scholar 

  70. Hartree–Fock–Bogoliubov Results based on the Gogny Force, http://www-phynu.cea.fr/science_en_ligne/carte_potentiels_microscopiques/carte_potentiel_nucleaire_eng.htm, (2006)

  71. M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M.V. Stoitsov, S.M. Wild, Nuclear energy density optimization: Large deformations. Phys. Rev. C 85, 024304 (2012)

    Article  ADS  Google Scholar 

  72. UNEDF SciDAC Collaboration, Universal Nuclear Energy Density Functional, https://unedf.mps.ohio-state.edu/

  73. M. Kortelainen, T. Lesinski, J. Moré, W. Nazarewicz, J. Sarich, N. Schunck, M.V. Stoitsov, S. Wild, Nuclear energy density optimization. Phys. Rev. C 82, 024313 (2010)

    Article  ADS  Google Scholar 

  74. Mass Explorer UNEDF Project, http://massexplorer.frib.msu.edu/content/DFTMassTables.html

  75. NUCLEI, Nuclear Computational Low–Energy Initiative, A SciDAC–4 Project, https://nuclei.mps.ohio-state.edu/

  76. SciDAC, Scientific Discovery through Advanced Computing, https://www.scidac.gov/

  77. S.E. Agbemava, A.V. Afanasjev, D. Ray, P. Ring, Global performance of covariant energy density functionals: Ground state observables of even-even nuclei and the estimate of theoretical uncertainties. Phys. Rev. C 89, 054320 (2014)

    Article  ADS  Google Scholar 

  78. S.E. Agbemava, A.V. Afanasjev, A. Taninah, Propagation of statistical uncertainties in covariant density functional theory: Ground state observables and single-particle properties. Phys. Rev. C 99, 014318 (2019)

    Article  ADS  Google Scholar 

  79. G.A. Lalazissis, J. König, P. Ring, New parametrization for the Lagrangian density of relativistic mean field theory. Phys. Rev. C 55, 540–543 (1997)

    Article  ADS  Google Scholar 

  80. Y.K. Gambhir, P. Ring, A. Thimet, Relativistic mean field theory for finite nuclei. Ann. Phys. 198(1), 132–179 (1990)

    Article  ADS  Google Scholar 

  81. J.D. Walecka, A theory of highly condensed matter. Ann. Phys. 83(2), 491–529 (1974)

    Article  ADS  Google Scholar 

  82. B.D. Serot, J.D. Walecka, The relativistic nuclear many body problem. Adv. Nucl. Phys. 16, 1–327 (1986)

    Google Scholar 

  83. G.A. Lalazissis, S. Karatzikos, R. Fossion, D. Pena Arteaga, A.V. Afanasjev, P. Ring, The effective force NL3 revisited. Phys. Lett. B 671(1), 36–41 (2009)

    Article  ADS  Google Scholar 

  84. A. Afanasjev, S. Agbemava, D. Ray, P. Ring, Neutron drip line: Single-particle degrees of freedom and pairing properties as sources of theoretical uncertainties. Phys. Rev. C 91, 014324 (2015)

    Article  ADS  Google Scholar 

  85. J. Boguta, A.R. Bodmer, Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 292(3), 413–428 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  86. A. Arima, F. Iachello, Interacting boson model of collective states I. The vibrational limit. Annal. Phys. 99(2), 253–317 (1976)

    Article  ADS  Google Scholar 

  87. A. Arima, F. Iachello, Interacting boson model of collective nuclear states II. The rotational limit. Annal. Phys. 111(1), 201–238 (1978)

    Article  ADS  Google Scholar 

  88. O. Scholten, F. Iachello, A. Arima, Interacting boson model of collective nuclear states III. The transition from SU(5) to SU(3). Ann. Phys. 115(2), 325–366 (1978)

    Article  ADS  Google Scholar 

  89. F. Iachello, A. Arima, The Interacting Boson Model. Cambridge Monographs on Mathematical Physics (Cambridge University Press, 1987)

  90. K. Nomura, N. Shimizu, T. Otsuka, Formulating the interacting boson model by mean-field methods. Phys. Rev. C 81, 044307 (2010)

    Article  ADS  Google Scholar 

  91. K. Nomura, T. Otsuka, N. Shimizu, L. Guo, Microscopic formulation of the interacting boson model for rotational nuclei. Phys. Rev. C 83, 041302 (2011)

    Article  ADS  Google Scholar 

  92. K. Nomura, T. Otsuka, R. Rodríguez-Guzmán, L.M. Robledo, P. Sarriguren, Collective structural evolution in neutron-rich Yb, Hf, W, Os, and Pt isotopes. Phys. Rev. C 84, 054316 (2011)

    Article  ADS  Google Scholar 

  93. P.O. Lipas, P. Toivonen, D.D. Warner, IBA consistent-\(Q\) formalism extended to the vibrational region. Phys. Lett. B 155(5), 295–298 (1985)

    Article  ADS  Google Scholar 

  94. D.D. Warner, R.F. Casten, Revised formulation of the phenomenological interacting Boson approximation. Phys. Rev. Lett. 48, 1385–1389 (1982)

    Article  ADS  Google Scholar 

  95. D.D. Warner, R.F. Casten, Predictions of the interacting boson approximation in a consistent \(Q\) framework. Phys. Rev. C 28, 1798–1806 (1983)

    Article  ADS  Google Scholar 

  96. N.V. Zamfir, P. von Brentano, R.F. Casten, J. Jolie, Test of two-level crossing at the \(N=90\) spherical-deformed critical point. Phys. Rev. C 66, 021304 (2002)

    Article  ADS  Google Scholar 

  97. V. Werner, P. von Brentano, R.F. Casten, C. Scholl, E.A. McCutchan, R. Krücken, J. Jolie, Alternative interpretation of E0 strengths in transitional regions. Eur. Phys. J. A - Hadrons Nuclei 25(1), 455–456 (2005)

    Article  Google Scholar 

  98. W.-T. Chou, N.V. Zamfir, R.F. Casten, Unified description of collective nuclei with the interacting boson model. Phys. Rev. C 56, 829–838 (1997)

    Article  ADS  Google Scholar 

  99. R.J. Casperson, IBAR: Interacting boson model calculations for large system sizes. Comput. Phys. Commun. 183(4), 1029–1035 (2012)

    Article  ADS  Google Scholar 

  100. E.A. McCutchan, D. Bonatsos, N.V. Zamfir, Connecting the X(5)-\({\beta }^{2}\), X(5)-\({\beta }^{4}\), and X(3) models to the shape/phase-transition region of the interacting boson model. Phys. Rev. C 74, 034306034306 (2006)

    ADS  Google Scholar 

  101. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, R.B. Cakirli, R.F. Casten, K. Blaum, Proxy-SU(3) symmetry in heavy deformed nuclei. Phys. Rev. C 95, 064325 (2017)

    Article  ADS  Google Scholar 

  102. A.S. Davydov, G.F. Filippov, Rotational states in even atomic nuclei. Nucl. Phys. 8, 237–249 (1958)

    Article  Google Scholar 

  103. L. Esser, U. Neuneyer, R.F. Casten, P. von Brentano, Correlations of the deformation variables \(\beta \) and \(\gamma \) in even-even Hf, W, Os, Pt, and Hg nuclei. Phys. Rev. C 55, 206–210 (1997)

    Article  ADS  Google Scholar 

  104. I. Hossain, H. Abdullah, I. Ahmed, M. Saeed, B(E2) value of even-even \(^{108-112}\)Pd isotopes by interacting boson model-1*. Chin. Phys. C 38, 10 (2013)

    Google Scholar 

  105. M.A. El-Khosht, Transition rates in level structure of doubly even ytterbium isotopes. Il Nuovo Cimento A (1965-1970) 106(7), 875–883 (1993)

    Article  Google Scholar 

  106. C.W. Reich, R.C. Greenwood, R.A. Lokken, Decay of \(^{172}\)Tm: The mixing of \( K_{\pi } = 0^+\) and \(2^+\) bands in \(^{172}\)Yb. Nucl. Phys. A 228(3), 365–381 (1974)

    Article  ADS  Google Scholar 

  107. J.P. Elliott, Collective motion in the nuclear shell model I. Classification schemes for states of mixed configurations. Proc. R. Soc. Lond. A 245(1240), 128–145 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. J.P. Elliott, Collective motion in the nuclear shell model II. The introduction of intrinsic wave-functions. Proc. R. Soc. Lond. A 245(1243), 562–581 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. J.P. Elliott, M. Harvey, Collective motion in the nuclear shell model III. The calculation of spectra. Proc. R. Soc. Lond. A 272(1351), 557–577 (1963)

    Article  ADS  Google Scholar 

  110. M. Harvey, The Nuclear \(\text{SU}_3\) Model, in Advances in Nuclear Physics: Volume 1, p. 67-182, ed. M. Baranger and E. Vogt. Springer US, Plenum, New York (1968)

  111. B.G. Wybourne, Classical groups for physicists. Physik unserer Zeit 6(6), 196–196 (1974)

    MATH  Google Scholar 

  112. M. Moshinsky, Y.F. Smirnov, The Harmonic Oscillator in Modern Physics (Harwood academic Publishers, Amsterdam, 1996)

    MATH  Google Scholar 

  113. Francesco Iachello, Lie Algebras and Applications, volume 708. Springer, Berlin, 01 (2006)

  114. M.G. Mayer, On closed shells in nuclei II. Phys. Rev. 75, 1969–1970 (1949)

    Article  ADS  Google Scholar 

  115. O. Haxel, J.H.D. Jensen, H.E. Suess, On the magic numbers in nuclear structure. Phys. Rev. 75, 1766 (1949)

    Article  ADS  Google Scholar 

  116. M.G. Mayer, J.H.D. Jensen, Elementary theory of nuclear shell structure (Wiley, New York, New York, 1955)

    MATH  Google Scholar 

  117. D. Bonatsos, I.E. Assimakis, N. Minkov, A. Martinou, S. Sarantopoulou, R.B. Cakirli, R.F. Casten, K. Blaum, Analytic predictions for nuclear shapes, prolate dominance, and the prolate-oblate shape transition in the proxy-SU(3) model. Phys. Rev. C 95, 064326 (2017)

    Article  ADS  Google Scholar 

  118. D. Bonatsos, Prolate over oblate dominance in deformed nuclei as a consequence of the SU(3) symmetry and the Pauli principle. Eur. Phys. J. A 53(7), 148 (2017)

    Article  ADS  Google Scholar 

  119. S.G. Nilsson, Binding states of individual nucleons in strongly deformed nuclei. Kong. Dan. Vid. Sel. Mat. Fys. Med. 29N16, 1–69 (1955)

    MATH  Google Scholar 

  120. I. Ragnarsson, S.G. Nilsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  121. R.B. Cakirli, K. Blaum, R.F. Casten, Indication of a mini-valence Wigner-like energy in heavy nuclei. Phys. Rev. C 82, 061304 (2010)

    Article  ADS  Google Scholar 

  122. D. Bonatsos, S. Karampagia, R.B. Cakirli, R.F. Casten, K. Blaum, L.A. Susam, Emergent collectivity in nuclei and enhanced proton-neutron interactions. Phys. Rev. C 88, 054309 (2013)

    Article  ADS  Google Scholar 

  123. A. Martinou, D. Bonatsos, N. Minkov, I.E. Assimakis, S.K. Peroulis, S. Sarantopoulou, J. Cseh, Proxy-SU(3) symmetry in the shell model basis. Eur. Phys. J. A 56(9), 239 (2020)

    Article  ADS  Google Scholar 

  124. A. de Shalit, M. Goldhaber, Mixed configurations in nuclei. Phys. Rev. 92, 1211–1218 (1953)

    Article  ADS  MATH  Google Scholar 

  125. D. Bonatsos, H. Sobhani, H. Hassanabadi, Shell model structure of proxy-SU(3) pairs of orbitals. Eur. Phys. J. Plus 135, 710 (2020)

    Article  Google Scholar 

  126. P. Federman, S. Pittel, Towards a unified microscopic description of nuclear deformation. Phys. Lett. B 69(4), 385–388 (1977)

    Article  ADS  Google Scholar 

  127. P. Federman, S. Pittel, Hartree-Fock-Bogolyubov study of deformation in the Zr-Mo region. Phys. Lett. B 77(1), 29–32 (1978)

    Article  ADS  Google Scholar 

  128. P. Federman, S. Pittel, Unified shell-model description of nuclear deformation. Phys. Rev. C 20, 820–829 (1979)

    Article  ADS  Google Scholar 

  129. A.N. Bohr, The coupling of nuclear surface oscillations to the motion of individual nucleons. Kgl. Dan. Vidensk. Selsk., Mat. fys. Medd 26, 1–40 (1952)

    MATH  Google Scholar 

  130. O. Castaños, J.P. Draayer, Y. Leschber, Shape variables and the shell model. Zeitschrift für Physik A Atomic Nuclei 329(1), 33–43 (1988)

    Article  ADS  Google Scholar 

  131. J.P. Draayer, S.C. Park, O. Castaños, Shell-Model Interpretation of the Collective-Model Potential-Energy Surface. Phys. Rev. Lett. 62, 20–23 (1989)

    Article  ADS  Google Scholar 

  132. P. Ring, P. Schuck, The Nuclear Many-Body Problems (Springer, Berlin, 1980)

    Book  Google Scholar 

  133. H. De Vries, C.W. De Jager, C. De Vries, Nuclear charge-density-distribution parameters from elastic electron scattering. At. Data Nucl. Data Tables 36(3), 495–536 (1987)

    Article  ADS  Google Scholar 

  134. J.R. Stone, N.J. Stone, S.A. Moszkowski, Incompressibility in finite nuclei and nuclear matter. Phys. Rev. C 89, 044316 (2014)

    Article  ADS  Google Scholar 

  135. A. Martinou, D. Bonatsos, K.E. Karakatsanis, S. Sarantopoulou, I.E. Assimakis, S.K. Peroulis, N. Minkov, Why nuclear forces favor the highest weight irreducible representations of the fermionic SU(3) symmetry. Eur. Phys. J. A 57(3), 83 (2021)

    Article  ADS  Google Scholar 

  136. Dennis Bonatsos, I. E. Assimakis, N. Minkov, Andriana Martinou, S. Sarantopoulou, R. B. Cakirli, R. F. Casten, and K. Blaum. Parameter–independent predictions for shape variables of heavy deformed nuclei in the proxy–SU(3) model. arXiv:1706.05832 [nucl-th] (2017)

  137. K.T. Hecht, A. Adler, Generalized seniority for favored \(J \ne 0\) pairs in mixed configurations. Nucl. Phys. A 137(1), 129–143 (1969)

    Article  ADS  Google Scholar 

  138. A. Arima, M. Harvey, K. Shimizu, Pseudo LS coupling and pseudo \(SU3\) coupling schemes. Phys. Lett. B 30(8), 517–522 (1969)

    Article  ADS  Google Scholar 

  139. R.D. Ratna Raju, J.P. Draayer, K.T. Hecht, Search for a coupling scheme in heavy deformed nuclei: The pseudo SU(3) model. Nucl. Phys. A 202, 433–466 (1973)

    Article  ADS  Google Scholar 

  140. J.P. Draayer, K.J. Weeks, K.T. Hecht, Strength of the \(Q_{\pi } \cdot Q_{\nu }\) interaction and the strong-coupled pseudo-SU(3) limit. Nucl. Phys. A 381(1), 1–12 (1982)

    Article  ADS  Google Scholar 

  141. O. Castaños, M. Moshinsky, C. Quesne, Transformation to pseudo-SU(3) in heavy deformed nuclei. Phys. Lett. B 277(3), 238–242 (1992)

    Article  ADS  Google Scholar 

  142. O. Castaños, V. Velázquez, A.P.O. Hess, J.G. Hirsch, Transformation to pseudo-spin-symmetry of a deformed Nilsson hamiltonian. Phys. Lett. B 321(4), 303–306 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  143. J.N. Ginocchio, Pseudospin as a relativistic symmetry. Phys. Rev. Lett. 78, 436–439 (1997)

    Article  ADS  Google Scholar 

  144. J.N. Ginocchio, On the relativisitic origins of pseudo-spin symmetry in nuclei. J. Phys. G: Nucl. Part. Phys. 25(4), 617–622 (1999)

    Article  ADS  Google Scholar 

  145. J.P. Draayer, K.J. Weeks, Shell-model description of the low-energy structure of strongly deformed nuclei. Phys. Rev. Lett. 51, 1422–1425 (1983)

    Article  ADS  Google Scholar 

  146. J.P. Draayer, K.J. Weeks, Towards a shell model description of the low-energy structure of deformed nuclei I. Even-even systems. Annal. Phys. 156(1), 41–67 (1984)

    Article  ADS  Google Scholar 

  147. V.S. Shirley, E. Browne, C.M. Lederer, Table of isotopes (Wiley, New York, New York, 1978)

    Google Scholar 

  148. D. Bonatsos, A. Martinou, S. Sarantopoulou, I.E. Assimakis, S.K. Peroulis, N. Minkov, Parameter-free predictions for the collective deformation variables \(\beta \) and \(\gamma \) within the pseudo-SU(3) scheme. Eur. Phys. J. ST 229(14–15), 2367–2387 (2020)

    Article  Google Scholar 

  149. L. Wilets, M. Jean, Surface oscillations in even-even nuclei. Phys. Rev. 102, 788–796 (1956)

    Article  ADS  MATH  Google Scholar 

  150. D.R. Bès, The \(\gamma \)-dependent part of the wave functions representing \(\gamma \)-unstable surface vibrations. Nucl. Phys. 10, 373–385 (1959)

    Article  MATH  Google Scholar 

  151. G. Rakavy, The classification of states of surface vibrations. Nucl. Phys. 4, 289–294 (1957)

    Article  Google Scholar 

  152. A.S. Davydov, V.S. Rostovsky, Relative transition probabilities between rotational levels of non-axial nuclei. Nucl. Phys. 12(1), 58–68 (1959)

    Article  Google Scholar 

  153. P. Cejnar, J. Jolie, R.F. Casten, Quantum phase transitions in the shapes of atomic nuclei. Rev. Mod. Phys. 82, 2155–2212 (2010)

    Article  ADS  Google Scholar 

  154. D.H. Feng, R. Gilmore, S.R. Deans, Phase transitions and the geometric properties of the interacting boson model. Phys. Rev. C 23, 1254–1258 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  155. R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New York, New York, 1981)

    MATH  Google Scholar 

  156. L. Fortunato, Solutions of the Bohr Hamiltonian, a compendium. Eur. Phys. J. A - Hadrons Nuclei 26(1), 1–30 (2005)

    ADS  Google Scholar 

  157. P. Buganu, L. Fortunato, Recent approaches to quadrupole collectivity: models, solutions and applications based on the Bohr hamiltonian. J. Phys. G: Nucl. Part. Phys. 43(9), 093003 (2016)

    Article  ADS  Google Scholar 

  158. D. Bonatsos, D. Lenis, E.A. McCutchan, D. Petrellis, I. Yigitoglu, Exactly separable version of X(5) and related models. Phys. Lett. B 649(5–6), 394–399 (2007)

    Article  ADS  Google Scholar 

  159. P.M. Davidson, O.W. Richardson, Eigenfunctions for calculating electronic vibrational intensities. Proceedi. R. Soc. London. Ser. A, Contain. Papers Math. Phys. Charact. 135(827), 459–472 (1932)

    ADS  MATH  Google Scholar 

  160. D.J. Rowe, C. Bahri, Rotation-vibrational spectra of diatomic molecules and nuclei with Davidson interactions. J. Phys. A: Math. Gen. 31(21), 4947–4961 (1998)

    Article  ADS  MATH  Google Scholar 

  161. A. Kratzer, Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys. 3(5), 289–307 (1920)

    Article  ADS  Google Scholar 

  162. L. Fortunato, A. Vitturi, Analytically solvable potentials for \(\gamma \)-unstable nuclei. J. Phys. G: Nucl. Part. Phys. 29(7), 1341–1349 (2003)

    Article  ADS  Google Scholar 

  163. L. Fortunato, A.A. Vitturi, New analytic solutions of the collective Bohr Hamiltonian for a \(\gamma \)-soft, \(\beta \)-soft axial rotor. J. Phys. G: Nucl. Part. Phys. 30(5), 627–635 (2004)

    Article  ADS  Google Scholar 

  164. R.D. Woods, D.S. Saxon, Diffuse surface optical model for nucleon-nuclei scattering. Phys. Rev. 95, 577–578 (1954)

    Article  ADS  Google Scholar 

  165. M. Capak, D. Petrellis, B. Gonul, D. Bonatsos, Analytical solutions for the Bohr Hamiltonian with the Woods-Saxon potential. J. Phys. G: Nucl. Particle Phys. 42, 06 (2015)

    Article  Google Scholar 

  166. P.M. Morse, Diatomic molecules according to the wave mechanics II. Vibrational levels. Phys. Rev. 34, 57–64 (1929)

    Article  ADS  MATH  Google Scholar 

  167. I. Boztosun, D. Bonatsos, I. Inci, Analytical solutions of the Bohr Hamiltonian with the Morse potential. Phys. Rev. C 77, 044302 (2008)

    Article  ADS  Google Scholar 

  168. I. Inci, D. Bonatsos, I. Boztosun, Electric quadrupole transitions of the Bohr Hamiltonian with the Morse potential. Phys. Rev. C 84, 024309 (2011)

    Article  ADS  Google Scholar 

  169. D. Bonatsos, E.A. McCutchan, N. Minkov, R.F. Casten, P. Yotov, D. Lenis, D. Petrellis, I. Yigitoglu, Exactly separable version of the Bohr Hamiltonian with the Davidson potential. Phys. Rev. C 76, 064312 (2007)

    Article  ADS  Google Scholar 

  170. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rep. 251(5), 267–385 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  171. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  172. D. Bonatsos, P.E. Georgoudis, N. Minkov, D. Petrellis, C. Quesne, Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential. Phys. Rev. C 88, 034316 (2013)

    Article  ADS  Google Scholar 

  173. D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential. Phys. Rev. C 83, 044321 (2011)

    Article  ADS  Google Scholar 

  174. D. Bonatsos, N. Minkov, D. Petrellis, Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter. J. Phys. G: Nucl. Part. Phys. 42(9), 095104 (2015)

    Article  ADS  Google Scholar 

  175. N.J. Stone, Table of nuclear electric quadrupole moments. At. Data Nucl. Data Tables 111–112, 1–28 (2016)

    Article  ADS  Google Scholar 

  176. T.J. Mertzimekis, K. Stamou, A. Psaltis, An online database of nuclear electromagnetic moments. Nucl. Instrum. Methods Phys. Res., Sect. A 807, 56–60 (2016)

    Article  ADS  Google Scholar 

  177. A.M. Lane, Nuclear Theory (W. A. Benjamin, New York, 1964)

    Book  Google Scholar 

  178. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford; New York, 1983)

    Google Scholar 

  179. B. Pritychenko, M. Birch, B. Singh, Revisiting Grodzins systematics of \(B(E2)\) values. Nucl. Phys. A 962, 73–102 (2017)

    Article  ADS  Google Scholar 

  180. D. Habs and R. Krücken et al. Coulomb Excitation of Neutron–rich \(A\sim 140\) Nuclei. CERN Proposal INTC-P-156 (2002)

  181. C.E. Vargas, V. Velázquez, S. Lerma, Microscopic study of neutro-rich dysprosium isotopes. Eur. Phys. J. A 49(1), 4 (2013)

    Article  ADS  Google Scholar 

  182. A.K. Rath, P. Stevenson, P. Regan, F. Xu, P. Walker, Self-consistent description of dysprosium isotopes in the doubly midshell region. Nucl. Phys. Group 68, 10 (2003)

    Google Scholar 

  183. Z. Patel, P.-A. Söderström, Zs. Podolyák, P. H. Regan, P. M. Walker, H. Watanabe, E. Ideguchi, G. S. Simpson, H. L. Liu, S. Nishimura, Q. Wu, F. R. Xu, F. Browne, P. Doornenbal, G. Lorusso, S. Rice, L. Sinclair, T. Sumikama, J. Wu, Z. Y. Xu, N. Aoi, H. Baba, F. L. Bello Garrote, G. Benzoni, R. Daido, Y. Fang, N. Fukuda, G. Gey, S. Go, A. Gottardo, N. Inabe, T. Isobe, D. Kameda, K. Kobayashi, M. Kobayashi, T. Komatsubara, I. Kojouharov, T. Kubo, N. Kurz, I. Kuti, Z. Li, M. Matsushita, S. Michimasa, C.-B. Moon, H. Nishibata, I. Nishizuka, A. Odahara, E. Şahin, H. Sakurai, H. Schaffner, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, Zs. Vajta, A. Yagi, and R. Yokoyama. Isomer Decay Spectroscopy of \(^{164}\)Sm and \(^{166}\)Gd: Midshell collectivity around \(N=100\). Phys. Rev. Lett., 113, 262502 (2014)

  184. E. Ideguchi, G. S. Simpson, R. Yokoyama, Mn. Tanaka, S. Nishimura, P. Doornenbal, G. Lorusso, P.-A. Söderström, T. Sumikama, J. Wu, Z. Y. Xu, N. Aoi, H. Baba, F. L. Bello Garrote, G. Benzoni, F. Browne, R. Daido, Y. Fang, N. Fukuda, A. Gottardo, G. Gey, S. Go, N. Inabe, T. Isobe, D. Kameda, K. Kobayashi, M. Kobayashi, I. Kojouharov, T. Komatsubara, T. Kubo, N. Kurz, I. Kuti, Z. Li, M. Matsushita, S. Michimasa, C.-B. Moon, H. Nishibata, I. Nishizuka, A. Odahara, Z. Patel, S. Rice, E. Sahin, H. Sakurai, H. Schaffner, L. Sinclair, H. Suzuki, H. Takeda, J. Taprogge, Z.S. Vajta, H. Watanabe, and A. Yagi. \({\mu }{{\rm s}}\) isomers of \(^{158,160}\)Nd. Phys. Rev. C, 94, 064322 (2016)

  185. Y. Fu, H. Tong, X.F. Wang, H. Wang, D.Q. Wang, X.Y. Wang, J.M. Yao, Microscopic analysis of shape transition in neutron-deficient Yb isotopes. Phys. Rev. C 97, 014311 (2018)

    Article  ADS  Google Scholar 

  186. X.Y. Wu, J.M. Yao, Quadrupole collectivity and shell closure in neutron-rich nuclei near \(N=126\). Phys. Rev. C 99, 054329 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

While at reviewing process, preliminary results and limited portions of the present work have been presented at conferences by AZ (PANIC 2021, Lisbon 5-10 Sep 2021, poster presentation; and African Nuclear Physics Conference, virtual, 20-24.9.2021, oral presentation). AZ is grateful to C. Vergis for useful discussions and G. Zagoraios and S. Kolovi for their contribution. This research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number: 101742/2019) for AZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zyriliou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyriliou, A., Mertzimekis, T.J., Chalil, A. et al. A study of some aspects of the nuclear structure in the even–even Yb isotopes. Eur. Phys. J. Plus 137, 352 (2022). https://doi.org/10.1140/epjp/s13360-022-02414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02414-2

Navigation