Skip to main content
Log in

Band structures of the bowtie lattice and its ribbons influenced by \(\mathcal{PT}\)-symmetric imaginary potentials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

By introducing the \(\mathcal PT\)-symmetric complex potentials, we investigate the properties of the band structure of the bowtie lattice with \(\mathcal PT\) symmetry. It is found that the complex potentials directly lead to the enhancement of the energy-band overlap, including the occurrence of the threefold degeneracy. Meanwhile, the flat band is destroyed gradually and the \(\mathcal PT\)-symmetry breaking occurs. When the two-dimensional lattice is cut into one-dimensional ribbons, the effect of the complex potentials is tightly dependent on the types of the ribbon edges, i.e., zigzag or armchair. For the case of armchair ribbon, the roles of the \(\mathcal PT\)-symmetric potentials are more dependent on its width. We believe that this work is useful for understanding the band structures of the \(\mathcal PT\)-symmetric bowtie-lattice systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. K.G. Makris, L. Ge, H.E. Tureci, Phys. Rev. X 4, 041044 (2014)

    Google Scholar 

  2. B. Rosenstein, V. Zhuravlev, Phys. Rev. B 76, 014507 (2007)

    Article  ADS  Google Scholar 

  3. C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. C.M. Bender, S. Boettcher, P.N. Meisinger, J. Math. Phys. 40, 2201 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.M. Bender, D.C. Brody, H.F. Jones, Phys. Rev. Lett. 89, 270401 (2002)

    Article  MathSciNet  Google Scholar 

  6. A. Mostafazadeh, J. Math. Phys. 43, 3944 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Mostafazadeh, J. Phys. A Math. Gen. 36, 7081 (2003)

    Article  ADS  Google Scholar 

  8. H.F. Jones, J. Phys. A Math. Gen. 38, 1741 (2005)

    Article  ADS  Google Scholar 

  9. C. Dembowski, B. Dietz, H.D. Gräf, H.L. Harney, A. Heine, W.D. Heiss, A. Richter, Phys. Rev. E 69, 056216 (2004)

    Article  ADS  Google Scholar 

  10. H. Cartarius, J. Main, G. Wunner, Phys. Rev. Lett. 99, 173003 (2007)

    Article  ADS  Google Scholar 

  11. E.M. Graefe, H.F. Jones, Phys. Rev. A 84, 013818 (2011)

    Article  ADS  Google Scholar 

  12. Y.D. Chong, L. Ge, A. Douglas Stone, Phys. Rev. Lett. 106, 093902 (2012)

    Article  ADS  Google Scholar 

  13. V. Yannopapas, Phys. Rev. A 89, 013808 (2014)

    Article  ADS  Google Scholar 

  14. A.E. Miroshnichenko, B.A. Malomed, Y.S. Kivshar, Phys. Rev. A 84, 012123 (2011)

    Article  ADS  Google Scholar 

  15. M. Kang, F. Liu, J. Li, Phys. Rev. A 87, 053824 (2013)

    Article  ADS  Google Scholar 

  16. V. Achilleos, P.G. Kevrekidis, D.J. Frantzeskakis, R.C. Gonzalez, Phys. Rev. A 86, 013808 (2012)

    Article  ADS  Google Scholar 

  17. Y. Sun, W. Tan, H.Q. Li, J. Li, H. Chen, Phys. Rev. Lett. 112, 143903 (2014)

    Article  ADS  Google Scholar 

  18. M. Liertzer, L. Ge, A. Cerjan, A.D. Stone, H.E. Tureci, S. Rotter, Phys. Rev. Lett. 108, 173901 (2012)

    Article  ADS  Google Scholar 

  19. H. Jing, S.K. Özdemir, X.Y. Lu, J. Zhang, L. Yang, F. Nori, Phys. Rev. Lett. 113, 053604 (2014)

    Article  ADS  Google Scholar 

  20. K.G. Makris, R. El-Ganainy, D.N. Christodoulides, Z.H. Musslimani, Phys. Rev. Lett. 100, 103904 (2008)

    Article  ADS  Google Scholar 

  21. S. Klaiman, U. Günther, N. Moiseyev, Phys. Rev. Lett. 101, 080402 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  22. C.E. Ruter, K.G. Makris, R. El-Ganainy, D.N. Christodoulides, M. Segev, D. Kip, Nat. Phys. 6, 192 (2010)

    Article  Google Scholar 

  23. T. Kottos, Nat. Phys. 6, 166 (2010)

    Article  Google Scholar 

  24. O. Bendix, R. Fleischmann, T. Kottos, B. Shapiro, Phys. Rev. Lett. 103, 030402 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. K. Zhou, Z. Guo, J. Wang, S. Liu, Opt. Lett. 35, 2928 (2010)

    Article  ADS  Google Scholar 

  26. Y.D. Chong, L. Ge, H. Cao, A.D. Stone, Phys. Rev. Lett. 105, 053901 (2010)

    Article  ADS  Google Scholar 

  27. S. Longhi, Phys. Rev. A 82, 031801(R) (2010)

    Article  ADS  Google Scholar 

  28. S. Longhi, Phys. Rev. Lett. 105, 013903 (2010)

    Article  ADS  Google Scholar 

  29. B. Tobias, N.S. Vyacheslav, B. Andreas, W. Thomas, Phys. Rev. A 100, 115412 (2019)

    Google Scholar 

  30. T. Goldzak, A.A. Mailybaev, N. Moiseyev, Phys. Rev. Lett. 120, 013901 (2018)

    Article  ADS  Google Scholar 

  31. Y. Choi, C. Hahn, J.W. Yoon, S.H. Song, Nat. commun. 9, 2182 (2018)

    Article  ADS  Google Scholar 

  32. R. Fleury, D. Sounas, A. Alu, Nat. Commun. 6, 5905 (2015)

    Article  ADS  Google Scholar 

  33. H. Yang, X. Zhang, Y. Liu, Y. Yao, F. Wu, D. Zhao, Sci. Rep. 9, 10048 (2019)

    Article  ADS  Google Scholar 

  34. F. Quijandria, U. Naether, S.K. Ozdemir, F. Nori, D. Zueco, Phys. Rev. A 97, 053846 (2018)

    Article  ADS  Google Scholar 

  35. M.T. Manzoni, D.E. Chang, J.S. Douglas, Nat. Commun. 8, 1743 (2017)

    Article  ADS  Google Scholar 

  36. B.B. Wei, L. Jin, Sci. Rep. 7, 7165 (2017)

    Article  ADS  Google Scholar 

  37. R. Hamazaki, K. Kawabata, M. Ueda, Phys. Rev. Lett. 123, 090603 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Jin, Phys. Rev. A 96, 032103 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. M. Li, X. Ni, M. Weiner, A. Alu, A.B. Khanikaev, Phys. Rev. B 100, 045423 (2019)

    Article  ADS  Google Scholar 

  40. K. Esaki, M. Sato, K. Hasebe, M. Kohmoto, Phys. Rev. B 84, 205128 (2011)

    Article  ADS  Google Scholar 

  41. X. Ni, D. Smirnova, A. Poddubny, D. Leykam, Y. Chong, A.B. Khanikaev, Phys. Rev. B 98, 165129 (2018)

    Article  ADS  Google Scholar 

  42. Y.C. Lee, M.H. Hsieh, S.T. Flammia, R.K. Lee, Phys. Rev. Lett. 112, 130404 (2014)

    Article  ADS  Google Scholar 

  43. W. Li, C. Li, H. Song, Phys. Rev. A 95, 023827 (2017)

    Article  ADS  Google Scholar 

  44. K. Kawabata, Y. Ashida, M. Ueda, Phys. Rev. Lett. 119, 190401 (2017)

    Article  ADS  Google Scholar 

  45. T.D. Stanescu, V. Galitski, S.D. Sarma, Phys. Rev. A 82, 013608 (2010)

    Article  ADS  Google Scholar 

  46. W. Han, P. Huang, L. Li, F. Wang, P. Luo, K. Liu, X. Zhou, H. Li, X. Zhang, Y. Cui, T. Zhai, Nat. Commun. 10, 4728 (2019)

    Article  ADS  Google Scholar 

  47. A. Szameit, M.C. Rechtsman, O. Bahat-Treidel, M. Segev, Phys. Rev. A 84, 021806(R) (2011)

    Article  ADS  Google Scholar 

  48. M. Sarısaman, M. Tas, Phys. Rev. B 97, 045409 (2018)

    Article  ADS  Google Scholar 

  49. W. Zhang, T. Wu, X. Zhang, Sci. Rep. 7, 11407 (2017)

    Article  ADS  Google Scholar 

  50. A. Yoshida, Y. Otaki, R. Otaki, T. Fukui, Phys. Rev. B 100, 125125 (2019)

    Article  ADS  Google Scholar 

  51. A. Beygi, S.P. Klevansky, Phys. Rev. A 98, 022105 (2018)

    Article  ADS  Google Scholar 

  52. Y.M. Liu, F. Gao, J.H. Wu, M. Artoni, G.C. La Rocca, Phys. Rev. A 100, 043801 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11905027), the LiaoNing Revitalization Talents Program (Grant No. XLYC1907033) and the Fundamental Research Funds for the Central Universities (Grant No. N2002005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-Lian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, WL., Fan, DZ., Zhang, LL. et al. Band structures of the bowtie lattice and its ribbons influenced by \(\mathcal{PT}\)-symmetric imaginary potentials. Eur. Phys. J. Plus 137, 133 (2022). https://doi.org/10.1140/epjp/s13360-022-02370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02370-x

Navigation